• Title/Summary/Keyword: post-damage repair

Search Result 52, Processing Time 0.026 seconds

Ubiquitin E3 ligases controlling p53 stability

  • Lee, Seong-Won;Seong, Min-Woo;Jeon, Young-Joo;Chung, Chin-Ha
    • Animal cells and systems
    • /
    • v.16 no.3
    • /
    • pp.173-182
    • /
    • 2012
  • The p53 protein plays a pivotal role in tumor suppression. The cellular level of p53 is normally kept low by proteasome-mediated degradation, allowing cell cycle progression and cell proliferation. Under stress conditions, such as DNA damage, p53 is stabilized and activated through various post-translational modifications of itself as well as of its regulatory proteins for induction of the downstream genes responsible for cell cycle arrest, DNA repair, and apoptosis. Therefore, the level of p53 should be tightly regulated for normal cell growth and for prevention of the accumulation of mutations in DNA under stress conditions, which otherwise would lead to tumorigenesis. Since the discovery of Mdm2, a critical ubiquitin E3 ligase that destabilizes p53 in mammalian cells, nearly 20 different E3 ligases have been identified and shown to function in the control of stability, nuclear export, translocation to chromatin or nuclear foci, and oligomerization of p53. So far, a large number of excellent reviews have been published on the control of p53 function in various aspects. Therefore, this review will focus only on mammalian ubiquitin E3 ligases that mediate proteasome-dependent degradation of p53.

A Study on Cladding on an Inclined Cylindrical Surface using DED Additive Manufacturing (DED 적층 방식을 활용한 원통면 경사 적층에 관한 연구)

  • Kim, Yeoung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.91-97
    • /
    • 2022
  • The Directed Energy Deposition (DED) is a representative metal additive manufacturing method. Owing to its strong point of repairment, its application is gradually spreading in aerospace applications, power generation, military components, and mold making. 5-axis cladding is needed to repair damage, such as wear and scratches on cylindrical surfaces to circular-shaped parts, including sleeves and liners. Furthermore, the condition of cladding on inclined parts must also be considered to prevent interference between the nozzle and the part. In this study, the effects of changes in scanning speed due to the 5-axis control system and differences from the height of laser beam irradiation due to inclination are evaluated among the items that should be additionally considered in 5-axis cladding compared to 3-axis cladding. Moreover, the trends of the width and height of the clad are identified by different tilting angles via single line cladding. Lastly, cladding methods on cylindrical surfaces at various angles are proposed to enhance the clad quality and post-processing efficacy. These results can be applied with 5-axis cladding on inclined surfaces, including cylindrical surfaces.

p53 Nuclear Accumulation as a Possible Biomarker for Biological Radio-dosimetry in Oral Mucosal Epithelial Cells

  • Kim, Youn-Young;Kim, Jong-il;Kim, Jin;Yook, Jong-In;Kim, The-Hwan;Son, Young-Sook
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.123-129
    • /
    • 2001
  • Cellular response to ionizing radiation is affected by cell types, radiation doses, and post-irradiation time. Based on the trypan blue dye exclusion assay in normal oral mucosal cells (OM cells), a 48 h post-irradiation was sufffcient and an adequate time point for the evaluation of radiation sensitivity Its $LD_{50}$ was approximately 1.83 Gy To investigate possible biomarkers useful for the biological radiodosimetry of normal epithelial cells (p53, c-fos, cyclin D1, cdc-2, pRb) EGF receptor phosphorylation and Erk activation were evaluated at different radiation doses and different post-irradiation times. From 0.5 Gy, p53 was accumulated in the nucleus of basal cells of the OM raft culture at 4 h post-irradiation and sustained up to 24 h post-irradiation, which suggests that radiation-induced apoptosis or damage repair was not yet completed. The number of p53 positive cells and biosynthesis of p53 were correlated with radiation doses. Both cyclin D1 and c-fos were only transiently induced within 1 h post-irradiation. Cyclin D1 was induced at all radiation doses. However, cfos induction was highest at 0.1 Gy, approximately 7.3 fold more induction than the control, whose induction was reduced in a reverse correlation with radiation dose. The phosphorylation pattern of cdc-2 and pRb were unaffected by radiation. In contrast to A431 tails overexpressing the EGF receptor approximately 8.5 fold higher than normal epithelial, the OM cells reduced the basal level of the EGF receptor phosphorylation in a radiation dose dependent fashion. In conclusion, among radiation-induced biomolecules, the p53 nuclear accumulation may be considered for the future development of a useful marker far biological radiodosimetry in normal epithelial tissue since it was sustained for a longer period and showed a dose response relationship. Specific c-fos induction at a low dose may also be an important finding in this study It needs to be studied further for the elucidation of its possible connection with the low dose radio-adaptive response.

  • PDF

Protective Effects of Vitamin C against Genomic DNA Damage Caused by Genotoxicants (유전독성물질의 유전체 손상 작용에 대한 Vitamin C의 방호효과)

  • Yu, Gyeong Jin;Lee, Chun Bok
    • Journal of Life Science
    • /
    • v.23 no.8
    • /
    • pp.963-969
    • /
    • 2013
  • Although it is popularly believed that vitamin C protects cells from various genotoxicants, the degrees and mechanisms of itsprotective actions are not fully understood. In this study, vitamin C's protective effects against various genotoxicants were quantified, together with subsequent analyses on the mechanisms of these protective effects. Comet assay was employed to measure the degree of DNA damage in Chinese hamster ovary cells (CHO-K1) exposed to five genotoxicants, $H_2O_2$, $HgCl_2$, N-methyl-N-nitro-N-nitrosoguanidine (MNNG), 4-nitroquinoline-1-oxide (4NQO), and UV-irradiation. In cases cells were treated with $H_2O_2$, $HgCl_2$, and 4NQO together with vitamin C, the damage to DNA decreased to the level of the control group. In cases of UV-irradiation, the protective effect of vitamin C appeared, but did not reach the control levels. Interestingly, vitamin C did not have protective effects against the genotoxicity of MNNG. The degrees of DNA damage of cells treated with vitamin C prior to exposure togenotoxicants were 28~49% lower than those of cells treated with vitamin C after being exposed to genotoxicants. In conclusion, vitamin C had strong antioxidanteffects against genotoxicants by being a primary antioxidant blocking genotoxicity reaching the cells, rather than being a secondary antioxidant acting on post-exposure DNA repair processes. However, vitamin C's protective effects appearto be limited, as there are genotoxicants, such as MNNG, whosegenotoxicityis not affected by vitamin C. Therefore, the results of this study warrant furtherstudies on toxic mechanisms of genotoxicants and their interactions with protective mechanisms of vitamin C.

Oxidative Stress Induced Damage to Paternal Genome and Impact of Meditation and Yoga - Can it Reduce Incidence of Childhood Cancer?

  • Dada, Rima;Kumar, Shiv Basant;Chawla, Bhavna;Bisht, Shilpa;Khan, Saima
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.9
    • /
    • pp.4517-4525
    • /
    • 2016
  • Background: Sperm DNA damage is underlying aetiology of poor implantation and pregnancy rates but also affects health of offspring and may also result in denovo mutations in germ line and post fertilization. This may result in complex diseases, polygenic disorders and childhood cancers. Childhood cancer like retinoblastoma (RB) is more prevalent in developing countries and the incidence of RB has increased more than three fold in India in the last decade. Recent studies have documented increased incidence of cancers in children born to fathers who consume alcohol in excess and tobacco or who were conceived by assisted conception. The aetiology of childhood cancer and increased disease burden in these children is lin ked to oxidative stress (OS) and oxidative DNA damage( ODD) in sperm of their fathers. Though several antioxidants are in use to combat oxidative stress, the effect of majority of these formulations on DNA is not known. Yoga and meditation cause significant decline in OS and ODD and aid in regulating OS levels such that reactive oxygen speues meditated signal transduction, gene expression and several other physiological functions are not disrupted. Thus, this study aimed to analyze sperm ODD as a possible etiological factor in childhood cancer and role of simple life style interventions like yoga and meditation in significantly decreasing seminal oxidative stress and oxidative DNA damage and thereby decreasing incidence of childhood cancers. Materials and Methods: A total of 131 fathers of children with RB (non-familial sporadic heritable) and 50 controls (fathers of healthy children) were recruited at a tertiary center in India. Sperm parameters as per WHO 2010 guidelines and reactive oxygen species (ROS), DNA fragmentation index (DFI), 8-hydroxy-2'-deoxy guanosine (8-OHdG) and telomere length were estimated at day 0, and after 3 and 6 months of intervention. We also examined the compliance with yoga and meditation practice and smoking status at each follow-up. Results: The seminal mean ROS levels (p<0.05), sperm DFI (p<0.001), 8-OHdG (p<0.01) levels were significantly higher in fathers of children with RB, as compared to controls and the relative mean telomere length in the sperm was shorter. Levels of ROS were significantly reduced in tobacco users (p<0.05) as well as in alcoholics (p<0.05) after intervention. DFI reduced significantly (p<0.05) after 6 months of yoga and meditation practice in all groups. The levels of oxidative DNA damage marker 8-OHdG were reduced significantly after 3 months (p<0.05) and 6 months (p<0.05) of practice. Conclusions: Our results suggest that OS and ODD DNA may contribute to the development of childhood cancer. This may be due to accumulation of oxidized mutagenic base 8OHdG, and elevated MDA levels which results in MDA dimers which are also mutagenic, aberrant methylation pattern, altered gene expression which affect cell proliferation and survival through activation of transcription factors. Increased mt DNA mutations and aberrant repair of mt and nuclear DNA due to highly truncatred DNA repair mechanisms all contribute to sperm genome hypermutability and persistant oxidative DNA damage. Oxidative stress is also associated with genome wide hypomethylation, telomere shortening and mitochondrial dysfunction leading to genome hypermutability and instability. To the best of our knowledge, this is the first study to report decline in OS and ODD and improvement in sperm DNA integrity following adoption of meditation and yoga based life style modification.This may reduce disease burden in next generation and reduce incidence of childhood cancers.

Predictive Value of Xrcc1 Gene Polymorphisms for Side Effects in Patients undergoing Whole Breast Radiotherapy: a Meta-analysis

  • Xie, Xiao-Xue;Ouyang, Shu-Yu;Jin, He-Kun;Wang, Hui;Zhou, Ju-Mei;Hu, Bing-Qiang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6121-6128
    • /
    • 2012
  • Radiation-induced side effects on normal tissue are determined largely by the capacity of cells to repair radiation-induced DNA damage. X-ray repair cross-complementing group 1 (XRCC1) plays an important role in the repair of DNA single-strand breaks. Studies have shown conflicting results regarding the association between XRCC1 gene polymorphisms (Arg399Gln, Arg194Trp, -77T>C and Arg280His) and radiation-induced side effects in patients undergoing whole breast radiotherapy. Therefore, we conducted a meta-analysis to determine the predictive value of XRCC1 gene polymorphisms in this regard. Analysis of the 11 eligible studies comprising 2,199 cases showed that carriers of the XRCC1 399 Gln allele had a higher risk of radiation-induced toxicity than those with the 399 ArgArg genotype in studies based on high-quality genotyping methods [Gln vs. ArgArg: OR, 1.85; 95% CI, 1.20-2.86] or in studies with mixed treatment regimens of radiotherapy alone and in combination with chemotherapy [Gln vs. ArgArg: OR, 1.60; 95% CI, 1.09-2.23]. The XRCC1 Arg399Gln variant allele was associated with mixed acute and late adverse reactions when studies on late toxicity only were excluded [Gln allele vs. Arg allele: OR, 1.22; 95% CI, 1.00-1.49]. In contrast, the XRCC1 Arg280His variant allele was protective against radiation-induced toxicity in studies including patients treated by radiotherapy alone [His allele vs. Arg allele: OR, 0.58; 95% CI, 0.35-0.96]. Our results suggest that XRCC1 399Gln and XRCC1 280Arg may be independent predictors of radiation-induced toxicity in post-surgical breast cancer patients, and the selection of genotyping method is an important factor in determining risk factors. No evidence for any predictive value of XRCC1 Arg194Trp and XRCC1 -77T>C was found. So, larger and well-designed studies might be required to further evaluate the predictive value of XRCC1 gene variation on radiation-induced side effects in patients undergoing whole breast radiotherapy.

Deterioration Evaluation Method of Noise Barriers for Managements of Highway (고속도로 방음벽 유지관리를 위한 방음벽 노후도 평가 방안)

  • Kim, Sangtae;Shin, Ilhyoung;Kim, Kyoungsu;Kim, Daae;Kim, Heungrae;Im, Jahae;Lee, Jajun
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.4
    • /
    • pp.387-399
    • /
    • 2019
  • This research aimed to prepare the classification of the damage types and the damage rating system of noise barriers for expressway noise barriers and to develop deterioration evaluation method of noise barriers by reflecting them. The noise barrier consists of soundproof panels, foundations and posts and the soundproof panels with 10 different types of materials are used in a single or mixed form.In this paper, damage of soundproof panel shows a single or composite damage, and thus a evaluation model of deterioration has been developed for noise barriers that can reflect the characteristic of noise barriers. Materials used mainly for soundproof walls were divided into material types for metal, plastic, timber, transparent and concrete. And damage types for noise barrier were classified into corrosion, discoloration, deformation, spalling and dislocation and damage types were subdivided according to the noise barrier's components and materials. Damage rating was divided into good, minor, normal and severe for each major part of noise barrier to assess damage rating of soundproof panel, foundation and post. The deterioration degree of noise barrier was evaluated comprehensively by using the deterioration evaluation method of whole noise barrier using weighted average. Deterioration evaluation method that can be systematically assessed has been developed for noise barrier using single or mixed soundproof panel and noise barrier with single or complex damage types. Through such an evaluation system, it is deemed that the deterioration status of noise barrier installed can be systematically understood and utilized for efficient maintenance planning and implementation for repair and improvement of noise barriers.

Interaction of Resveratrol and Genistein with Nucleic Acids

  • Usha, Subbiah;Johnson, Irudayam Maria;Malathi, Raghunathan
    • BMB Reports
    • /
    • v.38 no.2
    • /
    • pp.198-205
    • /
    • 2005
  • Resveratrol (RES) and genistein (GEN) are the dietary natural products known to possess chemopreventive property and also the ability to repair DNA damage induced by mutagens/carcinogens. It is believed that the therapeutic activity of these compounds could be primarily due to their interaction with nucleic acids but detailed reports are not available. We here explore the interaction of these drugs with nucleic acids considering DNA and RNA as a potential therapeutic target. The interaction of RES and GEN has been analysed in buffered solution with DNA [saline sodium citrate (SSC)] and RNA [tris ethylene diammine tetra acetic acid (TE)] using UV-absorption and Fourier transform infrared (FTIR) spectroscopy. The UV analysis revealed lesser binding affinity with nucleic acids at lower concentration of RES (P/D = 5.00 and 10.00), while at higher drug concentration (P/D = 0.75, 1.00 and 2.50) hyperchromic effect with shift in the ${\lambda}_{max}$ is noted for DNA and RNA. A major RES-nucleic acids complexes was observed through base pairs and phosphate backbone groups with K = $35.782\;M^{-1}$ and K = $34.25\;M^{-1}$ for DNA-RES and RNA-RES complexes respectively. At various concentrations of GEN (P/D = 0.25, 0.50, 0.75, 1.00 and 2.50) hyperchromicity with shift in the ${\lambda}_{max}$ from 260 $\rightarrow$ 263 om and 260 $\rightarrow$ 270 nm is observed for DNA-GEN and RNA-GEN complexes respectively. The binding constant (from UV analysis) for GEN-nucleic acids complexes could not be obtained due to GEN absorbance overlap with that of nucleic acids at 260 nm. Nevertheless a detailed analysis with regard to the interaction of these drugs (RES/GEN) with DNA and RNA could feasibly be understood by FTIR spectroscopy. The NH band of free DNA and RNA which appeared at $3550-3100\;cm^{-1}$ and $3650-2700\;cm^{-1}$ shifted to $3450-2950\;cm^{-1}$ and $3550-3000\;cm^{-1}$ in DNA-RES and RNA-RES complexes respectively. Similarly shifts corresponding to $3650-3100\;cm^{-1}$ and $3420-3000\;cm^{-1}$ have been observed in DNA-GEN and RNA-GEN complexes respectively. The observed reduction in NH band of free nucleic acids upon complexation of these drugs is an indication of the involvement of the hydroxyl (OH) and imino (NH) group during the interaction of the drugs and nucleic acids (DNA/RNA) through H-bonded formation. The interaction of RES and GEN with bases appears in the order of G $\geq$ T > C > A and A > C $\geq$ T > G. Further interaction of these natural compounds with DNA and RNA is also supported by changes in the vibrational frequency (shift/intensity) in symmetrical and asymmetrical stretching of aromatic rings of drugs in the complex spectra. No appreciable shift is observed in the DNA and RNA marker bands, indicating that the B-DNA form and A-family conformation of RNA are not altered during their interaction with RES and GEN.

Effect of Photoperiod on Radiation-Induced Pink Mutations in Tradescantia Stamen Hairs (자주달개비 수술털에서 방사선에 의해 유발되는 분홍돌연변이에 대한 광주기의 영향)

  • 김원록;김진규
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.3
    • /
    • pp.331-335
    • /
    • 1999
  • The present study was carried out to investigate the combined effect of radiation and photoperiod (PP) regimes on Tradescantia 4430 somatic cell mutations. Potted plants were irradiated with 0.3, 0.5 and 1.0 Gy of gamma radiation from 60Co source. The plants irradiated only with gamma radiation were used as control group (CT). The somatic cell mutation rate in 0.5 Gy irradiated CT and PP20 group started to increase on the 6th day and reached a maximum value on the l0th day and 9th day after irradiation while the rate in the experimental group under 4 hours of photoperiod a day (PP4) started to increase on the l0th day and reached a maximal value on the 16th day post-irradiation. The slope of dose-response curve in CT was 5.99 ($r^2$=0.99), while it was 6.93 ($r^2$=0.98) in PP20 and 11.74 ($r^2$=0.99) in PP4, respectively. The biological efficacy of radiation in the induction of pink mutation increased by 15.7% in PP20 and 95.9 % in PP4, respectively. It is suggested that photoperiod regimes unfavorable to the plant have an additive effect on radiation-induced mutations and a delaying or inhibiting effect on cell damage repair, as well.

  • PDF

Crack Control of Flexure-Dominant Reinforced Concrete Beams Repaired with Strain-Hardening Cement Composite (SHCC) Materials (변형경화형 시멘트 복합체를 활용한 휨항복형 철근콘크리트 보의 균열제어)

  • Cha, Jun-Ho;Park, Wan-Shin;Lee, Young-Oh;Kim, Sun-Woo;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.109-120
    • /
    • 2011
  • This paper presents an experimental study results on the crack control of flexure-dominant reinforced concrete beams repaired with strain-hardening cement composite (SHCC). Five RC beams were fabricated and tested until failure. One unrepaired RC beam was a control specimen (CBN) and remaining four speciemens were repaired with SHCC materials. The test parameters included two types of SHCC matrix ductility and two types of repair method (patching and layering). Test results demonstrated that RC beams repaired with SHCC showed no concrete crushing or spalling until final failure, but numerous hair cracks were observed. The control specimen CBN failed due to crushing. It is important to note that SHCC matrix can improve crack-damage mitigation and flexural behavior of RC beams such as flexural strength, post peak ductility, and energy dissipation capacity. In the perspective of crack width, crack widths in RC beams repaired with SHCC had far smaller crack width than the control specimen CBN under the same deflection. Especially, the specimens repaired with SHCC of PVA0.75%+PE0.75% showed a high durability and ductility. The crack width indicates the residual capacity of the beam since SHCC matrix can delay residual capacity degradation of the RC beams.