• Title/Summary/Keyword: post-buckling strength

Search Result 82, Processing Time 0.021 seconds

Design of space truss structures

  • El-Sheikh, Ahmed
    • Structural Engineering and Mechanics
    • /
    • v.6 no.2
    • /
    • pp.185-200
    • /
    • 1998
  • Space truss design usually involves two main assumptions: that truss members are pin-ended, and compression members possess brittle post-buckling characteristics. The validity of these assumptions in the design of a new group of space trusses with continuous chords and eccentric joints is questionable. With chord member continuity and the consequent improvement in compression member behaviour, current design practice might be too conservative. In this paper, it is shown that substantial improvements in overall truss strength have resulted when the true member end conditions are considered, thus indicating potential savings in truss weight with considerable magnitudes.

Numerical modelling and codification of imperfections for cold-formed steel members analysis

  • Dubina, Dan;Ungureanu, Viorel;Rondal, Jacques
    • Steel and Composite Structures
    • /
    • v.5 no.6
    • /
    • pp.515-533
    • /
    • 2005
  • Buckling and post-buckling of cold-formed steel members are rather difficult to predict due to material and geometrical non-linearity. However, numerical techniques have reached a level of maturity such that many are now successfully undertaking ultimate strength analysis of cold-formed steel members. In numerical non-linear analysis, both geometrical and material imperfections, have to be estimated and properly used. They must be codified in terms of shape and magnitude. The presented paper represents a state-of-art report, including relevant results obtained by the authors and collected from literature, on that problem.

Predicting the Compressive Strength of Thin-walled Composite Structure (복합재 박막 구조물의 압축강도 예측)

  • Kim, Sung Joon;Lee, Donggeon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.2
    • /
    • pp.9-15
    • /
    • 2019
  • The initial buckling of thin walled structures does not result in immediate failure. This post buckling capability is used to achieve light weight design, and final failure of thin walled structure is called crippling. To predict the failure load, empirical methods are often used for thin walled structures in design stage. But empirical method accuracy depend on geometry. In this study, experimental, empirical and numerical study of the crippling behavior of I-section beam made of carbon-epoxy are performed. The progressive failure analysis model to simulate the crippling failure is evaluated using the test results. In this study, commercial software LS-DYNA is utilized to compute the collapse load of composite specimen. Six kinds of specimens were tested in axial compression where correlation between analytical and experimental results has performed. From the results, we have partially conclude that the flange width-to-thickness ratio is found to influence the accuracy of empirical and numerical method.

Hysteresis Characteristics of Buckling Restrained Brace with Precast RC Restraining Elements (조립형 프리캐스트 콘크리트 보강재를 가지는 비좌굴가새의 이력특성)

  • Shin, Seung-Hoon;Oh, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.72-84
    • /
    • 2016
  • The conventional brace system is generally accepted as the lateral load resisting system for steel structures due to efficient story drift control and economic feasibility. But lateral stiffness of the structure decreases when buckling happens to the brace in compression, so that it results in unstable structure with unstable hysteresis behavior through strength deterioration. Buckling restrained brace(BRB) system, in which steel core is confined by mortar/concrete-filled tube, represents stable behavior in the post-yield range because the core's buckling is restrained. So, seismic performance of BRB is much better than that of conventional brace system in point of energy absorption capacity, and it is applied the most in high seismicity regions as damper element. BRBs with various shaped-sections have been developed across the globe, but the shapes experimented in Korea are now quite limited. In this study, we considered built-up type of restraining member made up of precast reinforcement concrete and the steel core. we experimented the BRB according to AISC(2005) and evaluated seismic performances and hysteresis characteristics.

Experimental Study on Global Buckling of Singly Symmetric FRP Members (일축대칭 FRP 부재의 전체좌굴에 관한 실험적 연구)

  • Lee, Seungsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.99-106
    • /
    • 2006
  • Due to single symmetry of cross section, T-shaped members are likely to buckle in a flexural-torsional mode when they are subjected to axial compression. Therefore, the flexural-torsional buckling can be regarded as a governing mode of global buckling. An experimental program has been carried out to investigate the flexural-torsional buckling behavior of pultruded T-shaped members. Two types of pultruded members were tested in the experiment, and they were made of either E-glass/vinylester or E-glass/polyester. Lay-up and thickness of reinforcing layers, volume fractions of each constituents in layers, mechanical properties were experimentally determined. Two sets of knife edge fixure were used to simulate simple support condition for flexure and twisting, and the lateral displacements and the angle of twist were measured using three potentiometers. Every specimen buckled in a flexural-torsional mode, and most of the specimens showed post-buckling strength.

Seismic upgrading of reinforced concrete frames with steel plate shear walls

  • Korkmaz, Hasan H.;Ecemis, Ali S.
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.473-484
    • /
    • 2017
  • The objective of this paper is to report on a study of the use of unstiffened thin steel plate shear walls (SPSWs) for the seismic performance improvement of reinforced concrete frames with deficient lateral rigidity. The behaviour of reinforced concrete frames during seismic activities was rehabilitated with an alternative and occupant-friendly retrofitting scheme. The study involved tests of eight 1/3 scale, one bay, two storey test specimens under cyclic quasi-static lateral loadings. The first specimen, tested in previous test program, was a reference specimen, and in seven other specimens, steel infill plates were used to replace the conventional infill brick or the concrete panels. The identification of the load-deformation characteristics, the determination of the level of improvement in the overall strength, and the elastic post-buckling stiffness were the main issues investigated during the quasi-static test program. With the introduction of the SPSWs, it was observed that the strength, stiffness and energy absorption capacities were significantly improved. It was also observed that the experimental hysteresis curves were stable, and the composite systems showed excellent energy dissipation capacities due to the formation of a diagonal tension field action along with a diagonal compression buckling of the infill plates.

Experimental investigation on the seismic performance of cored moment resisting stub columns

  • Hsiao, Po-Chien;Lin, Kun-Sian
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.353-366
    • /
    • 2021
  • Cored moment resisting stub column (CMSC) was previously developed by the features of adopting a core segment which remains mostly elastic and reduced column section (RCS) details around the ends to from a stable hysteretic behavior with large post-yield stiffness and considerable ductility. Several full-scale CMSC components with various length proportions of the RCSs with respect to overall lengths have been experimentally investigated through both far-field and near-fault cyclic loadings followed by fatigue tests. Test results verified that the proposed CMSC provided very ductile hysteretic responses with no strength degradation even beyond the occurrence of the local buckling at the side-segments. The effect of RCS lengths on the seismic performance of the CMSC was verified to relate with the levels of the deformation concentration at the member ends, the local buckling behavior and overall ductility. Estimation equations were established to notionally calculate the first-yield and ultimate strengths of the CMSC and validated by the measured responses. A numerical model of the CMSC was developed to accurately capture the hysteretic performance of the specimens, and was adopted to clarify the effect of the surrounding frame and to perform a parametric study to develop the estimation of the elastic stiffness.

Probabilistic seismic assessment of mega buckling-restrained braced frames under near-fault ground motions

  • Veismoradi, Sajad;Darvishan, Ehsan
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.487-498
    • /
    • 2018
  • Buckling-restrained braces are passive control devices with high level of energy dissipation ability. However, they suffer from low post-yield stiffness which makes them vulnerable to severe ground motions, especially near-field earthquakes. Among the several methods proposed to improve resistance of BRB frames, mega-brace configuration can be a solution to increase frame lateral strength and stiffness and improve distribution of forces to prevent large displacement in braces. Due to the limited number of research regarding the performance of such systems, the current paper aims to assess seismic performance of BRB frames with mega-bracing arrangement under near-field earthquakes via a detailed probabilistic framework. For this purpose, a group of multi-story mega-BRB frames were modelled by OpenSEES software platform. In the first part of the paper, simplified procedures including nonlinear pushover and Incremental Dynamic Analysis were conducted for performance evaluation. Two groups of near-fault seismic ground motions (Non-pulse and Pulse-like records) were considered for analyses to take into account the effects of record-to-record uncertainties, as well as forward directivity on the results. In the second part, seismic reliability analyses are conducted in the context of performance based earthquake engineering. Two widely-known EDP-based and IM-based probabilistic frameworks are employed to estimate collapse potential of the structures. Results show that all the structures can successfully tolerate near-field earthquakes with a high level of confidence level. Therefore, mega-bracing configuration can be an effective alternative to conventional BRB bracing to withstand near-field earthquakes.

An Experimental Study on the Buckling & Behaviour of Single-Layer Latticed Dome (단층 래티스 돔의 좌굴 및 거동에 관한 실험적 연구)

  • Kim, Cheol-Hwan;Jung, Hwan-Mok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.4 s.22
    • /
    • pp.35-44
    • /
    • 2006
  • The form-resistant Systems like a dome and shell are used more widely than post-beam structure system in large space structure. Single layer latticed dome system, one of the form-resistant system, has great merits in manufacturing and constructing but the failure mechanism is not clarified yet. The purpose of this paper is to find out the buckling characteristics of single-layer latticed domes with square network by using the experimental method. Major test parameters are the stiffness of lattice member and space of square lattice. The specimens are applied uniform loading of snow type.

  • PDF

Numerical Study of PZ Strength Effects on Cyclic Seismic Performance of RBS Steel Moment Connections (패널존 강도가 RBS 철골모멘트접합부의 내진거동에 미치는 영향에 대한 수치해석적 연구)

  • Lee, Cheol-Ho;Kim, Jae-Hoon;Kim, So-Yeon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.180-190
    • /
    • 2006
  • Effects of panel zone (PZ) strength on cyclic seismic performance of the RBS connections was studied based on the validated finite element analysis. High-profile cyclic correlation of finite element model with the full-scale test results based on the material and geometric nonlinear post-buckling analysis was among the most significant consideration in this study. Numerical response results as affected by the panel zone strength reproduced the experimentally observed results quite reasonably. The finite element modeling capability of this study can be used to supplement or to replace in part the costly full-scale connection testing.

  • PDF