In this paper, a method to find the weighted possibilistic variance and moments about the mean value of fuzzy numbers via applying a difuzzification using minimizer of the weighted distance between two fuzzy numbers is introduced. In this way, we obtain the nearest weighted point with respect to a fuzzy number, this main result is a new and interesting alternative justification to define of weighted mean of a fuzzy number. Considering this point and the weighted distance quantity, we introduce the weighted possibilistic mean (WPM) value and the weighted possibilistic variance(WPV) of fuzzy numbers. This paper shows that WPM is the nearest weighted point to fuzzy number and the WPV of fuzzy number is preserved more properties of variance in probability theory so that it can simply introduce the possibilistic moments about the mean of fuzzy numbers without problem. The moments of fuzzy numbers play an important role to estimate of parameters, skewness, kurtosis in many of fuzzy times series models.
Image segmentation is teh important step in image infromation extraction for computer vison sytems. Fuzzy clustering methods have been used extensively in color image segmentation. Most analytic fuzzy clustering approaches are derived from the fuzzy c-means (FCM) algorithm. The FCM algorithm uses th eprobabilistic constraint that the memberships of a data point across classes sum to 1. However, the memberships resulting from the FCM do not always correspond to the intuitive concept of degree of belongingor compatibility. moreover, the FCM algorithm has considerable trouble above under noisy environments in the feature space. Recently, the possibilistic C-mean (PCM) for solving growing for color image segmentation. In the PCM, the membersip values may be interpreted as degrees of possibility of the data points belonging to the classes. So, the problems in the FCM can be solved by the PCM. The clustering results by just PCM are not smoothly bounded, and they often have holes. So, the region growing was used as a postprocessing. In our experiments, we illustrated that the proposed method is reasonable than the FCM in noisy enviironments.
Fuzzy c-means(FCM)와 possibilistic c-means(PCM)는 퍼지 클러스터링 영역에서 대표적인 두 가지 방법으로 많은 패턴 인식 문제들에 성공적으로 활용되어져 왔다. 하지만 이들 방법 역시 잡음 민감성과 중첩 클러스터 문제를 가지고 있다. 이들 문제점을 극복하기 위해, 최근 두 방법을 결합하려는 시도가 있어왔고, possibilistic fuzzy c-means(PFCM)는 FCM과 PCM을 목적 함수 단계에서 통합함으로써 두 방법이 가지는 문제점을 완화시키는 성공적인 결과를 보여주었다. 이 논문에서는 PFCM에 regularization을 도입함으로써 PFCM의 잡음 민감성을 한층 더 줄여줄 수 있는 향상된 PFCM을 소개한다. Regularization은 해공간을 평탄화 함으로써 잡음의 영향을 줄이는 대표적인 방법 중 하나이다. 제안한 방법은 PFCM의 장점과 더불어 regularization에 의해 잡음의 영향을 더욱 줄일 수 있으며, 이는 실험을 통해 확인할 수 있다.
클러스터링은 주어진 데이터 포인트들을 주어진 개수의 그룹으로 나누는 비지도 학습의 한 방법이다. 클러스터링의 방법 중 하나로 널리 알려진 퍼지 클러스터링은 하나의 포인트가 모든 클러스터에 서로 다른 정도로 소속될 수 있도록 함으로써 각 포인트가 하나의 클러스터에만 속할 수 있도록 하는 K-means와 같은 방법에 비해 자연스러운 클러스터 형태의 유추가 가능하고, 잡음에 강한 장점이 있다. 이 논문에서는 기존의 퍼지 클러스터링 방법 중 소속도(membership)와 전형성(typicality)을 동시에 계산해 낼 수 있는 Possibilistic Fuzzy C-Means (PFCM) 방법에 Gath-Geva (GG)의 방법 을 적용하여 PFCM을 확장한다. 제안한 방법은 PFCM의 장점을 그대로 가지면서도, GG의 거리 척도에 의해 클러스터들 사이의 경계를 강조함으로써 분류 목적에 적합한 소속도를 계산할 수 있으며, 전형성은 가우스 형태의 분포에서 생성된 포인트들의 분포 함수를 정확하게 모사함으로써 확률 밀도 추정의 방법으로도 사용될 수 있다. 또한 GG 방법은 Gustafson-Kessel 방법과 달리 클러스터에 포함된 포인트의 개수가 확연히 차이 나는 경우에도 정확한 결과를 얻을 수 있다는 사실을 실험 결과를 통해 확인할 수 있었다.
칼라 영상은 센서 잡음이나 채널 전송 에러에 의해 생기는 잡음에 의해 자주 오염되어진다. 이러한 칼라 잡음을 제거하기 위해 벡터 미디안, 벡터 $\alpha$-trimmed 평균 필터 등 여러 형태의 필터들이 개발되어져 왔다. 본 논문에서 제안된 클러스터 필터는 잡음에 오염된 환경 하에서 강건한 소속함수 값을 얻을 수 있는 가능적 c-mean 클러스터링 방법을 이용하였다. 또한, 본 논문에서는 혼합된 잡음에서 우수한 벡터 $\alpha$-trimmed 평균 필터를 개선하여, 원도우내의 화소중 중심에 위치한 화소에는 더 가중치를 부여하여 가중화 된 평균 필터링을 수행하는 가중화 벡터$\alpha$-trimmed 평균 필터를 제안하였다. 본 논문에서는 칼라 잡음이 발생한 영상에서 제안된 필터들의 성능을 평가하기 위해 칼라 잡음 발생기를 구현하였으며, 실험 결과는 NCD 척도 및 관측자의 시각에 의해 평가되었다. 실험 결과 제안된 퍼지 클러스터 필터는 NCD 관점에서 기존의 필터들에 비해 혼합된 잡음에서 우수한 성능을 보였고, 제안된 가중화된 벡터 $\alpha$-trimmed 평균 필터는 벡터 $\alpha$-trimmed 평균 필터에 비해 어떠한 잡음 하에서도 양호한 결과를 보였다.
자동차 부품의 측정 시스템은 현재 고가의 장비가 대부분이다. 본 논문에서는 저가의 장비를 구현하려고 하였다. 자동차의 부품은 여러가지가 있으나, 이 중에서 현재 공장에서 측정에 어려움을 겪고 있는 에어콘 스윗치인 마그네트 코일 하우징을 대상으로 하였다 특히 측정 대상이 크고, 카메라의 화소수가 40만 이하일 경우, 측정의 중요한 포인트는 화소수이기 때문에 이를 정확히 알아 내는데, FCM(Fuzzy C-means) 알고리듬이 좋은 결과를 주지만 속성 공간에서 유사성만을 고려하고, 공간영역에서 유사성은 고려되지 않기 때문에 FCM은 "equal evidence"와 "ignorance"를 구분하지 못한다. 이를 개선하기 위해서 FCM를 수정하여 먼저 FCM로 처리하고 하고 이를 바탕으로 PCM(Possibilistic C-means)를 사용하였다. 길이를 측정하기 위해서는 표준이 되는 정확한 자가 필요하지만 실재로는 획득하기가 용이 하지 않기 때문에 이미 공장에서 수작업하여 얻은 합격 제품의 화소수들의 평균치를 표준값으로 하고 이를 표준 길이로 하였다. 결과를 모니터에 보여주고, RSC-232 포트를 통하여 신호를 마이크로프로세서에 전달하여 제품의 양호(good), 분량(bad)을 판별하는 신호를 발생하게 하였다.
클러스터링은 주어진 데이터 포인트들을 주어진 개수의 그룹으로 나누는 비지도 학습의 한 방법이다. 클러스터링의 방법 중 하나로 널리 알려진 퍼지 클러스터링은 하나의 포인트가 모든 클러스터에 서로 다른 정도로 소속될 수 있도록 함으로써 하나의 클러스터에만 속할 수 있도록 하는 K-means와 같은 방법에 비해 자연스러운 클러스터 형태의 유추가 가능하고, 잡음에 강한 장점이 있다. 이 논문에서는 기존의 퍼지 클러스터링 방법 중 소속도(membership)와 전형성(typicality)을 동시에 계산해 낼 수 있는 Possibilistic Fuzzy C-Means(PFCM) 방법에 Gath-Geva(CG)의 방법을 적용하여 PFCM을 개선한다. 제안한 방법은 PFCM 장점을 그대로 가지면서도, GG의 거리 척도에 의해 클러스터들 사이의 경계를 강조함으로써 분류 목적에 적합한 소속도를 계산할 수 있으며 전형성은 가우스 형태의 분포에서 생성된 포인트들의 분포 함수를 정확하게 모사함으로써 확률 밀도 추정의 방법으로도 사용될 수 있다. 또한 GG 방법은 Gustafson-Kessel 방법과 달리 클러스터에 포함된 포인트의 개수가 확연히 차이나는 경우에도 정확한 결과를 얻을 수 있다. 이러한 사실들은 실험 결과를 통해 확인할 수 있다.
The transportation problem (TP) is one of the earliest and the most significant implementations of linear programming problem (LPP). It is a specific type of LPP that mostly works with logistics and it is connected to day-to-day activities in our everyday lives. Nowadays decision makers (DM's) aim to reduce the transporting expenses and simultaneously aim to reduce the transporting time of the distribution system so the bi-objective transportation problem (BOTP) is established in the research. In real life, the transportation parameters are naturally uncertain due to insufficient data, poor judgement and circumstances in the environment, etc. In view of this, neutrosophic bi-objective transportation problem (NBOTP) is introduced in this paper. By introducing single-valued trapezoidal neutrosophic numbers (SVTrNNs) to the co-efficient of the objective function, supply and demand constraints, the problem is formulated. The DM's aim is to determine the optimal compromise solution for NBOTP. The extended weighted possibility mean for single-valued trapezoidal neutrosophic numbers based on [40] is proposed to transform the single-valued trapezoidal neutrosophic BOTP (SVTrNBOTP) into its deterministic BOTP. The transformed deterministic BOTP is then solved using the dripping method [10]. Numerical examples are provided to illustrate the applicability, effectiveness and usefulness of the solution approach. A sensitivity analysis (SA) determines the sensitivity ranges for the objective functions of deterministic BOTP. Finally, the obtained optimal compromise solution from the proposed approach provides a better result as compared to the existing approaches and conclusions are discussed for future research.
자동차 부품의 측정 시스템은 현재 고가의 장비가 대부분이다. 본 논문에서는 저가의 장비를 구현하려고 하였다. 자동차의 부품은 여러가지가 있으나, 이 중에서 현재 공장에서 측정에 어려움을 겪고있는 에어콘 스윗치인 마그네트 코일 하우징을 대상으로 하였다. 특히 측정 대상이 크고, 카메라의 화소수가 40만 이하일 경우, 측정의 중요한 포인트는 화소수이기 때문에 이를 정확히 알아 내는데, FCM(Fuzzy C-means) 알고리듬이 좋은 결과를 주지만 속성 공간에서 유사성만을 고려하고, 공간영역에서 유사성은 고려되지 않기 때문에 FCM은 "equal evidence"와 "ignorance"를 구분하지 못한다. 이를 개선하기 위해서 FCM를 수정하여 먼저 FCM로 처리하고 하고 이를 바탕으로 PCM(Possibilistic C-means)를 사용하였다. 길이를 측정하기 위해서는 표준이 되는 정확한 자가 필요하지만 실재로는 획득하기가 용이 하지 않기 때문에 이미 공장에서 수작업하여 얻은 합격 제품의 화소수들의 평균치를 표준값으로 하고 이를 표준 길이로 하였다. 결과를 모니터에 보여주고, RSC-232 포트를 통하여 신호를 마이크로프로세서에 전달하여 제품의 양호(good), 불량(bad)을 판별하는 신호를 발생하게 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.