• Title/Summary/Keyword: positive equilibrium

Search Result 206, Processing Time 0.027 seconds

Some Partial Orders Describing Positive Aging

  • Choi, Jeen-Kap;Kim, Sang-Lyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.1
    • /
    • pp.119-127
    • /
    • 1996
  • The concepy of positive aging describles the adverse effects of age on the lifetime of units. Various aspects of this concepts are described in terms of conditional probability distribution of residual life times, failure rates, equilibrium distributions, etc. In this paper we will consider some partial ordering relations of life distribution under residual life functions and equilibrium distributions.

  • PDF

REMARKS ON CRITERIA FOR THE EXISTENCE OF A POSITIVE EQUILIBRIUM IN REACTION NETWORKS

  • Choo, S.M.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.949-953
    • /
    • 2011
  • It is interesting to know the behavior of a network from its structure. One interesting topic is to find a relation between the existence of a positive equilibrium of the reaction network and its structure. One approach to study this topic is using the concept of deficiency. Another is using some conditions on nodes, which can apply to large-size networks compared to deficiency. In this work, we show the relation between deficiency and the conditions.

AN ELEMENTARY PROOF OF THE EXISTENCE OF A POSITIVE EQUILIBRIUM IN REACTION NETWORKS

  • Choo, S.M.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1545-1552
    • /
    • 2010
  • It is interesting to know the behavior of a network from its structure. One interesting topic is to find a relation between the existence of a positive equilibrium of the reaction network and its structure. One approach to study this topic is using the concept of deficiency. In this work, we develop an algorithm and show an elementary proof of the relation based on the algorithm and deficiency.

Transport Properties of Charged Mosaic Membrane Based on Non-equilibrium Thermodynamics

  • Song, Myung-Kwan;Yang, Wong-Kang
    • Korean Membrane Journal
    • /
    • v.7 no.1
    • /
    • pp.67-70
    • /
    • 2005
  • It is well known as the role of ion exchange membrane with functional group in membrane matrix. Recently, we were reported that the charged mosaic membrane within parallel array of negative and positive charge groups. In this study we are reported the properties for the various transport coefficients of metal and heavy metal ions across charged mosaic membrane based on non-equilibrium thermodynamics is not based on equilibrium state.

OSCILLATION AND ATTRACTIVITY OF DISCRETE NONLINEAR DELAY POPULATION MODEL

  • Saker, S.H.
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.363-374
    • /
    • 2007
  • In this paper, we consider the discrete nonlinear delay model which describe the control of a single population of cells. We establish a sufficient condition for oscillation of all positive solutions about the positive equilibrium point and give a sufficient condition for the global attractivity of the equilibrium point. The oscillation condition guarantees the prevalence of the population about the positive steady sate and the global attractivity condition guarantees the nonexistence of dynamical diseases on the population.

THE ASYMPTOTIC STABILITY BEHAVIOR IN A LOTKA-VOLTERRA TYPE PREDATOR-PREY SYSTEM

  • Ko, Youn-Hee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.575-587
    • /
    • 2006
  • In this paper, we provide 3 detailed and explicit procedure of obtaining some regions of attraction for the positive steady state (assumed to exist) of a well known Lotka-Volterra type predator-prey system. Also we obtain the sufficient conditions to ensure that the positive equilibrium point of a well known Lotka-Volterra type predator-prey system with a single discrete delay is globally asymptotically stable.

A GLOBAL BEHAVIOR OF THE POSITIVE SOLUTIONS OF xn+1=βxn+ xn-2 ⁄ A+Bxn + xn-2

  • Park, Jong-An
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.1
    • /
    • pp.61-65
    • /
    • 2008
  • In this paper we prove that every positive solution of the third order rational difference equation $$x_{n+1}\;=\;\frac{{\beta}x_n\;+\;x_{n-2}}{A\;+\;Bx_n\;+\;x_{n-2}}$ converges to the positive equilibrium point $$\bar{x}\;=\;\frac{{\beta}\;+\;1\;-\;A}{B\;+\;1}$, where $0\;<\;{\beta}\;{\leq}\;B$, $1\;<\;A\;<\;{\beta}\;+\;1$

On the Stability of Critical Point for Positive Systems and Its Applications to Biological Systems

  • Lee, Joo-Won;Jo, Nam Hoon;Shim, Hyungbo;Son, Young Ik
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1530-1541
    • /
    • 2013
  • The coexistence and extinction of species are important concepts for biological systems and can be distinguished by an investigation of stability. When determining local stability of nonlinear systems, Lyapunov indirect method based on the Jacobian linearization has been widely employed due to its simplicity. Despite such popularity, it is not applicable to singular systems whose Jacobian has at least one eigenvalue that is equal to zero. In such singular cases, an appropriate Lyapunov function should be sought to determine the stability of systems, which is rather difficult and quite involved. In this paper, we seek for a simple criterion to determine stability of the equilibrium that is located at the boundary of the positive orthant, when one of eigenvalues of the Jacobian is zero. The goal of the paper is to present a generalized condition for the equilibrium to attract all trajectories that starting from initial condition in the positive orthant and near the equilibrium. Unlike the Lyapunov direct method, the proposed method requires just a simple algebraic computation for checking the stability of the critical point. Our approach is applied to various biological systems to show the effectiveness of the proposed method.

MATHEMATICAL MODELING FOR THE OBESITY DYNAMICS WITH PSYCHOLOGICAL AND SOCIAL FACTORS

  • Kim, Sehjeong;Kim, So-Yeun
    • East Asian mathematical journal
    • /
    • v.34 no.3
    • /
    • pp.317-330
    • /
    • 2018
  • We develop a mathematical model for the obesity dynamics to investigate the long term obesity trend with the consideration of psychological and social factors due to the increasing prevalence of obesity around the world. Many mathematical models for obesity dynamics adopted the modeling idea of infectious disease and treated overweight and obese people infectious and spreading obesity to normal weight. However, this modeling idea is not proper in obesity modeling because obesity is not an infectious disease. In fact, weight gain and loss are related to social interactions among different weight groups not only in the direction from overweight/obese to normal weight but also the other way around. Thus, we consider these aspects in our model and implement personal weight gain feature, a psychological factor such as body image dissatisfaction, and social interactions such as positive support on weight loss and negative criticism on weight status from various weight groups. We show that the equilibrium point with no normal weight population will be unstable and that an equilibrium point with positive normal weight population should have all other components positive. We conduct computer simulations on Korean demography data with our model and demonstrate the long term obesity trend of Korean male as an example of the use of our model.

A PROXIMAL POINT-TYPE ALGORITHM FOR PSEUDOMONOTONE EQUILIBRIUM PROBLEMS

  • Kim, Jong-Kyu;Anh, Pham Ngoc;Hyun, Ho-Geun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.749-759
    • /
    • 2012
  • A globally convergent algorithm for solving equilibrium problems is proposed. The algorithm is based on a proximal point algorithm (shortly (PPA)) with a positive definite matrix M which is not necessarily symmetric. The proximal function in existing (PPA) usually is the gradient of a quadratic function, namely, ${\nabla}({\parallel}x{\parallel}^2_M)$. This leads to a proximal point-type algorithm. We first solve pseudomonotone equilibrium problems without Lipschitzian assumption and prove the convergence of algorithms. Next, we couple this technique with the Banach contraction method for multivalued variational inequalities. Finally some computational results are given.