• Title/Summary/Keyword: positions

Search Result 6,435, Processing Time 0.036 seconds

Analysis of Pseudorandom Sequences Generated by Maximum Length Complemented Cellular Automata (최대길이 여원 CA 기반의 의사랜덤수열 분석)

  • Choi, Un-Sook;Cho, Sung-Jin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.1001-1008
    • /
    • 2019
  • A high-quality pseudorandom sequence generation is an important part of many cryptographic applications, including encryption protocols. Therefore, a pseudorandom number generator (PRNG) is an essential element for generating key sequences in a cryptosystem. A PRNG must effectively generate a large, high-quality random data stream. It is well known that the bitstreams output by the CA-based PRNG are more random than the bitstreams output by the LFSR-based PRNG. In this paper, we prove that the complemented CA derived from 90/150 maximum length cellular automata(MLCA) is a MLCA to design a PRNG that can generate more secure bitstreams and extend the key space in a secret key cryptosystem. Also we give a method for calculating the cell positions outputting a nonlinear sequence with maximum period in complemented MLCA derived from a 90/150 MLCA and a complement vector.

A Study on Correlation of the Results VFA Measured by CT Position with VFA Measured by InBody (CT 측정 위치에 따른 내장지방 면적과 Inbody로 측정한 내장지방 면적의 상관성 연구)

  • Lee, Sang Heon;Im, In Chul;Lee, Hyo-Yeong
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.691-698
    • /
    • 2019
  • The patients who visited the Health Promotion Center were compared between the visceral fat area according to CT fat measurement position and the visceral fat area measured by Inbody. In the CT measurement, the visceral fat area measured at the L4-5 and CT Umbilicus positions was not different regardless of gender. In addition, there was no difference between CT visceral fat area and Inbody visceral fat area in the correlation between visceral fat area according to CT measurement position and visceral fat area measured by Inbody. The highly correlated CT measurement position were male L4-5, L5-S1, female L3-4, L4-5, L5-S1, and Umbilicus. In addition, when studying the relationship between the inbody visceral fat area and CT visceral fat area regardless of gender, it is suggested to compare the visceral fat area at the CT L4-5 position.

An Implementation of Markerless Augmented Reality and Creation and Application of Efficient Reference Data Sets (마커리스 증강현실의 구현과 효율적인 레퍼런스 데이터 그룹의 생성 및 활용)

  • Koo, Ja-Myoung;Cho, Tai-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.204-207
    • /
    • 2009
  • This paper presents how to implement Markerless Augmented Reality and how to create and apply reference data sets. There are three parts related with implementation: setting camera, creation of reference data set, and tracking. To create effective reference data sets, we need a 3D model such as CAD model. It is also required to create reference data sets from various viewpoints. We extract the feature points from the model image and then extract 3D positions corresponding to the feature points using ray tracking. These 2D/3D correspondence point sets constitute a reference data set of the model. Reference data sets are constructed for various viewpoints of the model. Fast tracking can be done using a reference data set the most frequently matched with feature points of the present frame and model data near the reference data set.

  • PDF

Safety Distance Visualization Tool for LTE-Based UAV Positioning in Urban Areas (도심 지역 LTE 측위 기반 무인항공기 안전거리 생성 알고리즘 연구 및 시각화 도구 개발)

  • Lee, Halim;Kang, Taewon;Seo, Jiwon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.5
    • /
    • pp.408-414
    • /
    • 2019
  • We developed a surveillance tool for collision avoidance of unmanned aerial vehicles (UAVs) in urban areas. In our tool, users can visualize the safety distance on the actual 3D map of urban area. The estimated positions of UAVs are assumed to be obtained based on the long-term evolution (LTE) signals. The safety distance is defined to include two or more signals with bias. The safety distance calculation method used in this paper enables simulation similar to the actual urban areas where signals are frequently biased due to multipath. In the simulation, the parameters were set based on the measured values, and the change of the safety distance according to the number of faulty signals was simulated. As a result, increasing the number of faulty signals led to a longer safety distance as expected.

A New Image Processing-Based Fragment Detection Approach for Arena Fragmentation Test (Arena 시험을 위한 영상처리 기반 탄두 파편 검출 기법)

  • Lee, Hyukzae;Jung, Chanho;Park, Yongchan;Park, Woong;Son, Jihong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.599-606
    • /
    • 2019
  • The Arena Fragmentation Test(AFT) is one of the important tasks for designing a high-explosive warhead. In order to measure the statistics of a warhead in the test, fragments of a warhead that penetrate steel plates are detected by using complex and expensive measuring equipment. In this paper, instead of using specific hardware to measure the statistics of a warhead, we propose to use an image processing based object detection algorithm to detect fragments in AFT. To this end, we use a hard-thresholding method with a brightness feature and apply a morphology filter to remove noise components. We also propose a simple yet effective temporal filtering method to detect only the first penetrating fragments. We show that the performance of the proposed method is comparable to that of a hardware system under the same experimental conditions. Furthermore, the proposed method can produce better results in terms of finding exact positions of fragments.

Research on the Dispersion Stability and Scale up of Carbon Slurry Fuel (카본슬러리 연료의 분산안정성 개선 및 scale up 제조연구)

  • Jo, Min-Ho;Yang, Mun-Kyu;Lee, Ik-Mo;Cho, Joon-Hyun;Kwon, Tae-Soo;Jeong, Byung-Hun;Han, Jeong-Sik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.459-462
    • /
    • 2008
  • In manufacture of slurry fuel, the effects of process parameters on the carbon dispersion stability have been investigated. The particle size and contents of the carbon slurry taken from 3 (top, medium, bottom) positions in fuel reservoir were analyzed to estimate the dispersion of the carbon in Jet A-1. Through the application of various additives, it was found that NB463S84 additive showed the best dispersion and stability of carbon at accelerated gravity condition. The mixer performance was compared by the observation of height change of carbon-containing layer and measurement of particle sizes at the same conditions. Application of the mixing conditions obtained from the lab-scale to bench scale manufacture confirmed the practical feasibility of our research.

  • PDF

Temperature Distribution of Liquid Nitrogen Jet at Sub- and Supercritical States (아임계 및 초임계에서 액체 질소 분류의 온도 분포)

  • Lee, Hyunchang;Kim, Haisol;Cho, Seongho;Sung, Hong-Gye;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • Temperatures of cryogenic nitrogen jet inside an injector and at three different downstream positions (0.9, 10.6, and 28.1d) were measured with thermocouples in sub- and supercritical states. The jet temperature decreased while cooling the supply line and injector. The jet experienced from flash boiling, boiling and then no boiling according to decreasing temperature. As an analogy to flash-boiling at the subcritical state, pseudo-flash boiling has been assumed considering the existence of pseudo-boiling at the supercritical state. By showing an area where the temperature did not increase downstream, the plausibility of pseudo-flash boiling is proposed.

Measurement of rivulet movement and thickness on inclined cable using videogrammetry

  • Jing, Haiquan;Xia, Yong;Xu, Youlin;Li, Yongle
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.485-500
    • /
    • 2016
  • Stay cables in some cable-stayed bridges suffer large amplitude vibrations under the simultaneous occurrence of rain and wind. This phenomenon is called rain-wind-induced vibration (RWIV). The upper rivulet oscillating circumferentially on the inclined cable surface plays an important role in this phenomenon. However, its small size and high sensitivity to wind flow make measuring rivulet size and its movement challenging. Moreover, the distribution of the rivulet along the entire cable has not been measured. This paper applies the videogrammetric technique to measure the movement and geometry dimension of the upper rivulet along the entire cable during RWIV. A cable model is tested in an open-jet wind tunnel with artificial rain. RWIV is successfully reproduced. Only one digital video camera is employed and installed on the cable during the experiment. The camera records video clips of the upper rivulet and cable movements. The video clips are then transferred into a series of images, from which the positions of the cable and the upper rivulet at each time instant are identified by image processing. The thickness of the upper rivulet is also estimated. The oscillation amplitude, equilibrium position, and dominant frequency of the rivulet are presented. The relationship between cable and rivulet variations is also investigated. Results demonstrate that this non-contact, non-intrusive measurement method has good resolution and is cost effective.

Structural health rating (SHR)-oriented 3D multi-scale finite element modeling and analysis of Stonecutters Bridge

  • Li, X.F.;Ni, Y.Q.;Wong, K.Y.;Chan, K.W.Y.
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.99-117
    • /
    • 2015
  • The Stonecutters Bridge (SCB) in Hong Kong is the third-longest cable-stayed bridge in the world with a main span stretching 1,018 m between two 298 m high single-leg tapering composite towers. A Wind and Structural Health Monitoring System (WASHMS) is being implemented on SCB by the Highways Department of The Hong Kong SAR Government, and the SCB-WASHMS is composed of more than 1,300 sensors in 15 types. In order to establish a linkage between structural health monitoring and maintenance management, a Structural Health Rating System (SHRS) with relevant rating tools and indices is devised. On the basis of a 3D space frame finite element model (FEM) of SCB and model updating, this paper presents the development of an SHR-oriented 3D multi-scale FEM for the purpose of load-resistance analysis and damage evaluation in structural element level, including modeling, refinement and validation of the multi-scale FEM. The refined 3D structural segments at deck and towers are established in critical segment positions corresponding to maximum cable forces. The components in the critical segment region are modeled as a full 3D FEM and fitted into the 3D space frame FEM. The boundary conditions between beam and shell elements are performed conforming to equivalent stiffness, effective mass and compatibility of deformation. The 3D multi-scale FEM is verified by the in-situ measured dynamic characteristics and static response. A good agreement between the FEM and measurement results indicates that the 3D multi-scale FEM is precise and efficient for WASHMS and SHRS of SCB. In addition, stress distribution and concentration of the critical segments in the 3D multi-scale FEM under temperature loads, static wind loads and equivalent seismic loads are investigated. Stress concentration elements under equivalent seismic loads exist in the anchor zone in steel/concrete beam and the anchor plate edge in steel anchor box of the towers.

An exploratory study of stress wave communication in concrete structures

  • Ji, Qing;Ho, Michael;Zheng, Rong;Ding, Zhi;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.135-150
    • /
    • 2015
  • Large concrete structures are prone to cracks and damages over time from human usage, weathers, and other environmental attacks such as flood, earthquakes, and hurricanes. The health of the concrete structures should be monitored regularly to ensure safety. A reliable method of real time communications can facilitate more frequent structural health monitoring (SHM) updates from hard to reach positions, enabling crack detections of embedded concrete structures as they occur to avoid catastrophic failures. By implementing an unconventional mode of communication that utilizes guided stress waves traveling along the concrete structure itself, we may be able to free structural health monitoring from costly (re-)installation of communication wires. In stress-wave communications, piezoelectric transducers can act as actuators and sensors to send and receive modulated signals carrying concrete status information. The new generation of lead zirconate titanate (PZT) based smart aggregates cause multipath propagation in the homogeneous concrete channel, which presents both an opportunity and a challenge for multiple sensors communication. We propose a time reversal based pulse position modulation (TR-PPM) communication for stress wave communication within the concrete structure to combat multipath channel dispersion. Experimental results demonstrate successful transmission and recovery of TR-PPM using stress waves. Compared with PPM, we can achieve higher data rate and longer link distance via TR-PPM. Furthermore, TR-PPM remains effective under low signal-to-noise (SNR) ratio. This work also lays the foundation for implementing multiple-input multiple-output (MIMO) stress wave communication networks in concrete channels.