• Title/Summary/Keyword: positioning method

Search Result 1,695, Processing Time 0.024 seconds

RTT-Enabled Doppler Positioning in LEO-PNT Systems (저궤도 위성 항법 시스템에서의 왕복시간 및 도플러 천이 기반 위치 측위 기법 설계)

  • Duhui Yang;Jeongwan Kang;Minsoo Jeong;Sunwoo Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.3
    • /
    • pp.301-307
    • /
    • 2024
  • In this paper, we propose a round trip time (RTT)-enabled Doppler-based positioning method considering the low earth orbit (LEO) satellite visibility restriction. Doppler-based positioning typically requires visibility to at least eight satellites, which is often unfeasible due to the limited coverage of LEO satellites, as beamforming technique is applied to current LEO satellites. To solve this problem, we utilize the RTT measurements, assuming that a communication link exists between the user equipment (UE) and LEO satellites. We employ the Newton-Raphson method to estimate the UE position with RTT and Doppler measurements. We analyze the positioning performance of the considered framework via simulation, demonstrating its performance in 3D positioning errors under varying satellite numbers and measurement errors.

Joint Access Point Selection and Local Discriminant Embedding for Energy Efficient and Accurate Wi-Fi Positioning

  • Deng, Zhi-An;Xu, Yu-Bin;Ma, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.3
    • /
    • pp.794-814
    • /
    • 2012
  • We propose a novel method for improving Wi-Fi positioning accuracy while reducing the energy consumption of mobile devices. Our method presents three contributions. First, we jointly and intelligently select the optimal subset of access points for positioning via maximum mutual information criterion. Second, we further propose local discriminant embedding algorithm for nonlinear discriminative feature extraction, a process that cannot be effectively handled by existing linear techniques. Third, to reduce complexity and make input signal space more compact, we incorporate clustering analysis to localize the positioning model. Experiments in realistic environments demonstrate that the proposed method can lower energy consumption while achieving higher accuracy compared with previous methods. The improvement can be attributed to the capability of our method to extract the most discriminative features for positioning as well as require smaller computation cost and shorter sensing time.

Indoor Positioning Technique applying new RSSI Correction method optimized by Genetic Algorithm

  • Do, Van An;Hong, Ic-Pyo
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.186-195
    • /
    • 2022
  • In this paper, we propose a new algorithm to improve the accuracy of indoor positioning techniques using Wi-Fi access points as beacon nodes. The proposed algorithm is based on the Weighted Centroid algorithm, a popular method widely used for indoor positioning, however, it improves some disadvantages of the Weighted Centroid method and also for other kinds of indoor positioning methods, by using the received signal strength correction method and genetic algorithm to prevent the signal strength fluctuation phenomenon, which is caused by the complex propagation environment. To validate the performance of the proposed algorithm, we conducted experiments in a complex indoor environment, and collect a list of Wi-Fi signal strength data from several access points around the standing user location. By utilizing this kind of algorithm, we can obtain a high accuracy positioning system, which can be used in any building environment with an available Wi-Fi access point setup as a beacon node.

Development of 3-Dimensional Position/Attitude Determination Radio-navigation System with FLAOA and TOA Measurements

  • Jeon, Jong-Hwa;Lim, Jeong-Min;Yoo, Sang-Hoon;Sung, Tae-Kyung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.2
    • /
    • pp.61-71
    • /
    • 2018
  • Existing radio positioning systems have a drawback that the attitude of user's tag is difficult to be determined. Although forward link angle of arrival (FLAOA) technology that uses measurements of array antenna arranged in a tag among the angle of arrival (AOA) technologies can estimate attitude and positioning of tags, it cannot extend the estimated results into three-dimensional (3D) results due to complex non-linear model displayed because of the effects of 3D positioning and attitude in tags. This paper proposed a radio navigation technique that determines 3D attitude and positioning via FLAOA / time of arrival (TOA) integration. According to the order of determining attitude and positioning, two integration techniques were proposed. To analyze the performance of the proposed technique, MATLAB-based simulations were used to verify the performance. The simulation results showed that the first proposed method, TOA-FLAOA integrated technique, showed about 0.15 m of positioning error, and $2-3^{\circ}$ of attitude error performances regardless of the positioning space size whereas the second method, differenced FLAOA-TOA integrated technique, revealed a problem that a positioning error became larger as the size of the positioning space became larger.

Experimental Study on Dynamic Positioning Contol of a Semi-Submergible Platform (반잠수식 해양구조물의 동위치제어에 관한 실험적 연구)

  • 김성근;유휘룡;김상봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.661-669
    • /
    • 1995
  • This paper presents a design method of dynamic positioning control system in view ofpractical design concept for reliability and robust realization. This method adopts a design method of multivariable robust servo system. The practical experiments of the dynamic positioning control were carried out for a semi-submersible 2-lower hull type platform model with 4 rotatable thrusters in a small water tank. The results fo overall experiment show that the proposed position control method will be an efficient method to the better control performance of dynamic positioning system under serere environment and it is substentially practicable for the platform.

A Forward Link ADA Positioning method for mobile Robots (이동 로봇을 위한 순방향 링크 AOA 측위 방법)

  • Kim, Dong-Hyouk;Song, Seung-Hun;Roh, Gi-Hong;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.603-608
    • /
    • 2007
  • In the conventional AOA(angle-of-arrival) positioning utilizing reverse-link wireless channel, each sensor should be equipped with an array antenna to measure the incident angle of signal transmitting from a tag. To perform the complicated signal processing for angle measurements, sensor size and its power consumption will be large. In some applications like mobile robot location, there exists no strict restriction in tag size or in power consumption. Rather, it is desirable that the sensor would be as small as possible. This paper presents a new AOA positioning method utilizing forward-link channel. Under the assumption that the mobile robot is operating on the flat surface, the measurement model for FLAOA(tiJrward-link AOA) is derived first. Two kinds of position estimation algorithms using FLAOA measurements are proposed; Gauss-Newton method and closed-fonn solution method. With the proposed methods, we can ohtain the attitude of robot as well as its position. Positioning performance of proposed methods is compared by computer simulation. Simulation results show that the closed-form solution method using FLAOA measurements is suitable for indoor robot positioning.

Development of Effective Test Method for Positioning Accuracy of Armed Vehicle Inertial Navigation System (기동화력장비 관성항법장치의 효과적인 위치정확도 시험방법 개발)

  • Kim, Sung Hoon;Bae, In Hwa;Kim, Sang Boo
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.619-632
    • /
    • 2023
  • Purpose: The main function of INS (Inertial Navigation System) is to measure the position of an armed vehicle and its performance is confirmed through the positioning accuracy test of Korean Defense Standards (KDS). The current standards, however, do not provide clear test methods and the conditions for performing positioning accuracy tests. Accordingly, the purpose of this study is to develop a new method for positioning accuracy test which would be effective. Methods: In this study, a new INS positioning accuracy test method is suggested based on the analysis of test data collected through a statistical experiment known as central composite design. For the positioning accuracy experiment of K105A1, a self-propelled artillery, two factors of driving velocity and driving distance are considered. Results: Based on the analysis of experimental data, a regression model for the positioning error is fitted and the positioning accuracy test of INS is so developed to maximize the positioning error. The standard proximity rate is used as an additional test criterion to evaluate the performance level of INS. Conclusion: The proposed new positioning accuracy test for INS has the advantage of finding the nonconforming items effectively. It is also expected to be utilized for the other similar INS positioning accuracy tests.

A Hybrid of Smartphone Camera and Basestation Wide-area Indoor Positioning Method

  • Jiao, Jichao;Deng, Zhongliang;Xu, Lianming;Li, Fei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.723-743
    • /
    • 2016
  • Indoor positioning is considered an enabler for a variety of applications, the demand for an indoor positioning service has also been accelerated. That is because that people spend most of their time indoor environment. Meanwhile, the smartphone integrated powerful camera is an efficient platform for navigation and positioning. However, for high accuracy indoor positioning by using a smartphone, there are two constraints that includes: (1) limited computational and memory resources of smartphone; (2) users' moving in large buildings. To address those issues, this paper uses the TC-OFDM for calculating the coarse positioning information includes horizontal and altitude information for assisting smartphone camera-based positioning. Moreover, a unified representation model of image features under variety of scenarios whose name is FAST-SURF is established for computing the fine location. Finally, an optimization marginalized particle filter is proposed for fusing the positioning information from TC-OFDM and images. The experimental result shows that the wide location detection accuracy is 0.823 m (1σ) at horizontal and 0.5 m at vertical. Comparing to the WiFi-based and ibeacon-based positioning methods, our method is powerful while being easy to be deployed and optimized.

Error Analysis of Time-Based and Angle-Based Location Methods (시간기반과 각도기반의 측위방식 성능비교 및 오차 특성 분석)

  • Kim Dong-Hyeok;Song Seung-Hun;Sung Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.962-967
    • /
    • 2006
  • Indoor positioning is highlighted recently, and various kinds of indoor positioning systems are under developments. Since positioning systems have their own characteristics, proper positioning scheme should be chosen according to the required specifications. Positioning methods are classified into time-based and angle-based one. This paper presents the error analysis of time-based and angle-based location methods. Because measurements of these methods are nonlinear, linearizations are needed in both cases to estimate the user position. In the linearization, Gauss-Newton method is used in both cases. To analyze the position error, we investigate the error ellipse parameters that include eccentricity, rotation angle, and the size of ellipse. Simulation results show that the major axes of TOA and AOA method lie in different quadrants at most region of workspace, especially where the geometry is poor. When the TOA/AOA hybrid is employed, it is found that the error ellipse is reduced to the intersection of ellipses of TOA and AOA.

Improved IEEE 802.11 RSSI Attenuation Log Model by Weighted Fitting Method (가중치 적합 기법을 이용한 개선된 IEEE 802.11 RSSI 감쇠 로그 모델)

  • Shin, Seokhun;Park, Joon Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.70-75
    • /
    • 2015
  • With the development of communication technologies and smartphone, requirements of positioning accuracy for LBS (Location Based Service) are becoming increasingly important. LBS is a service which offers the information or entertainment based on a location to users. Therefore, positioning is very important for LBS. Among many positioning methods, IEEE 802.11 WLAN positioning measures the distance using the RSSI (Received Signal Strength Indicator) attenuation log model. Thus in order to enhance positioning, we modify the IEEE 802.11 RSSI attenuation log model by adaptive weighting method. In this paper, we propose improved IEEE 802.11 RSSI attenuation log model for enhanced indoor positioning.