• Title/Summary/Keyword: position tracking

Search Result 1,512, Processing Time 0.026 seconds

Macro-Micro Manipulation with Visual Tracking and its Application to Wheel Assembly

  • Cho Changhyun;Kang Sungchul;Kim Munsang;Song Jae-Bok
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.461-468
    • /
    • 2005
  • This paper proposes a wheel-assembly automation system, which assembles a wheel into a hub of a vehicle hung to a moving hanger in a car manufacturing line. A macro-micro manipulator control strategy is introduced to increase the system bandwidth and tracking accuracy to ensure insertion tolerance. A camera is equipped at the newly designed wheel gripper, which is attached at the center of the end-effector of the macro-micro manipulator and is used to measure position error of the hub of the vehicle in real time. The redundancy problem in the macro-micro manipulator is solved without complicated calculation by assigning proper functions to each part so that the macro part tracks the velocity error while the micro part regulates the fine position error. Experimental results indicate that tracking error satisfies the insertion tolerance of assembly $({\pm}1mm)$, and thus it is verified that the proposed system can be applied to the wheel assembly task on a moving hanger in the manufacturing line.

A sun tracking control system using two DOF active sensor array

  • Ha, Yun-Su;Kim, Jong-Hwa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1310-1317
    • /
    • 2014
  • In our daily life, the need of energy increases day by day. However, the amount of natural resources on the earth is limited and thus gaining renewable energy as an energy resource is one of the important and urgent problems. Solar energy is one of the most popular available energy sources that can be converted into electricity by using solar panels. In order for solar panels to produce maximal output power, the incident angle of the sunlight needs to be persistently perpendicular to the solar panel. By the way, most of the solar panels are installed at fixed position and direction. Therefore, as the sun's position changes, it is impossible to produce maximal output power inevitably. To improve this problem, in this paper, a sun tracking system using two degree-of-freedom (DOF) active sensor array is proposed so that the solar panel may always direct sunlight perpendicularly. And also a series of software, such as a search mode and a holding mode, which can control the developed sun tracking system is developed. Several experiments using the implemented sun tracking system are executed and the effectiveness of the system is verified from the experimental results.

Mobile Augmented Visualization Technology Using Vive Tracker (포즈 추적 센서를 활용한 모바일 증강 가시화 기술)

  • Lee, Dong-Chun;Kim, Hang-Kee;Lee, Ki-Suk
    • Journal of Korea Game Society
    • /
    • v.21 no.5
    • /
    • pp.41-48
    • /
    • 2021
  • This paper introduces a mobile augmented visualization technology that augments a three-dimensional virtual human body on a mannequin model using two pose(position and rotation) tracking sensors. The conventional camera tracking technology used for augmented visualization has the disadvantage of failing to calculate the camera pose when the camera shakes or moves quickly because it uses the camera image, but using a pose tracking sensor can overcome this disadvantage. Also, even if the position of the mannequin is changed or rotated, augmented visualization is possible using the data of the pose tracking sensor attached to the mannequin, and above all there is no load for camera tracking.

Development of Vision-Based Vehicle Tracking for Extracting Microscopic Traffic Information (미시적 교통정보자료의 취득을 위한 영상기반 차량추적기술 개발)

  • Lee, Ki-Young;Chang, Myung-Soon
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.7 s.85
    • /
    • pp.137-148
    • /
    • 2005
  • The position information of individual vehicles on a road at every time instant can be used to analyze the microscopic behaviors of driving of each vehicle. The limited information obtained from previous imaging technology such as traffic volume and interval velocity cannot be used to explore such microscopic traffic conditions. Also, information gathering for the microscopic behaviors by manual analysis of captured video takes large amount of time and man-power. In the paper we develop the rule-based vehicle tracking technology from which the position information of individual vehicles on a road at every time instant can be automatically obtained. Also, we extract the position data of driving vehicles on a road, length of 130m for every 0.05 second, and calculate the velocity of each traced vehicles to compare with the real velocity for the verification of accuracy. In the future, this type of tracking techniques based on video analysis can be widely used to provide the practically important information of road traffic conditions and to analyze the academically important microscopic behaviors of driving patterns.

RSSI based Indoor Location Tracking System using Wireless Sensor Network technology (무선 센서네트워크 기술을 활용한 RSSI기반의 실내위치인식 시스템)

  • Kwon, Joon-Dal;Shin, Jae-Wook;Shin, Kwang-Sik;Lee, Eun-Ah;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.364-367
    • /
    • 2007
  • We combined CC2431(Chipcon, Norway), as the platform for the Indoor Location Tracking, which follows Zigbee/IEEE802.15.4 standards in RSSI (Received Signal Strength Indicator) and Base Station Node and then, embodied Indoor Location Tracking System. CC2431 is composed of the Reference Node that transfer its current position at the designated place and the Blind Node. The Blind node receives the current position(X and Y coordinates) of the Reference Node fields which are being contiguous and also, calculates its current position and transfers it to the Base Station Node. The base station node is used for receiving the current position of blind node and passing its data to the PC as a gateway. We can make sure where is the Blind Node not only from the out-of-the-way place of the server side but from the outside in a real-time.

  • PDF

Animal Tracking System Using the Doppler Effect for Single LEO Satellite (도플러 효과를 이용한 단일 저궤도위성의 동물추적시스템 개발)

  • Lee, Jeong-Nam;Jang, Yeong-Geun;Lee, Byeong-Hun;Mun, Byeong-Yeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.61-69
    • /
    • 2006
  • Position determination accuracy is strongly depending on how much precisely and frequently satellite receiver measures transmitted signals from terminals on target animals when Doppler effect is applied for position determination. ARGOS satellite system has shown relatively high position determination accuracy by operating multiple satellites, which enable operator to get more Doppler shift data from terminals. In case of animal tracking mission with single satellite, however, it is difficult for the satellite receiver to receive transmitted signals from terminals frequently during short period that satellite passes over ground terminals. This is one of the main sources to decrease position accuracy on target animals. In this paper, the Doppler rate estimation is implemented to increase the number of Doppler shift data received by single satellite. It is proved that the relatively high position determination accuracy with increased number of estimated data can be obtained. We also suggest that the Doppler rate estimation is applicable for position determination system with single satellite.

Tracking System Development for Optimal Efficiency of PV System (PV 시스템의 효율 최적화를 위한 추적 시스템 개발)

  • Choi, Jung-Sik;Ko, Jae-Sub;Kim, Do-Yeon;Jung, Byung-Jin;Jung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.188-190
    • /
    • 2008
  • In this paper, it proposes a the high efficiency tracking system regarding power loss when operating a tracking system for environment variable such as a rapidly changing insolation to improve the power of PV tracking system. In case of tracking an azimuth and altitude of the sun in realtime, therefore, the actual PV power is less increasing than the power of tracking system fixed a specific position. To reduce the power loss, this paper proposes a nonel control algorithm of the tracking system. The paper is analyzed efficiency about conventional PV tracking method, comparing proposed algorithm with high performance method. We show propriety of proposed algorithm by means of the demonstrable study.

  • PDF

Efficiency optimization control of photovoltaic tracking system with climate and environment variation (기후환경 변화에 대한 태양광 추적 시스템의 효율최적화 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Jung, Chul-Ho;Kim, Do-Yeon;Jung, Byung-Jin;Jun, Young-Sun;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.403-406
    • /
    • 2008
  • In this paper proposes a novel tracking algorithm regarding the power loss when operating a tracking system for a rapidly changing insolation to improve the power of PV tracking system. In case of tracking an azimuth and altitude of the sun in realtime, therefore, the actual PV power is less increasing than the power of tracking system fixed a specific position. To reduce the power loss, this paper proposes a nonel control algorithm of the tracking system. The paper is analyzed efficiency about conventional PV tracking method, comparing proposed algorithm with high performance method. We show propriety of proposed algorithm by means of the demonstrable study.

  • PDF

Scale Invariant Single Face Tracking Using Particle Filtering With Skin Color

  • Adhitama, Perdana;Kim, Soo Hyung;Na, In Seop
    • International Journal of Contents
    • /
    • v.9 no.3
    • /
    • pp.9-14
    • /
    • 2013
  • In this paper, we will examine single face tracking algorithms with scaling function in a mobile device. Face detection and tracking either in PC or mobile device with scaling function is an unsolved problem. Standard single face tracking method with particle filter has a problem in tracking the objects where the object can move closer or farther from the camera. Therefore, we create an algorithm which can work in a mobile device and perform a scaling function. The key idea of our proposed method is to extract the average of skin color in face detection, then we compare the skin color distribution between the detected face and the tracking face. This method works well if the face position is located in front of the camera. However, this method will not work if the camera moves closer from the initial point of detection. Apart from our weakness of algorithm, we can improve the accuracy of tracking.

Experimental Evaluation of Position Sensorless Control on Hybrid Electric Vehicle Applications

  • Choi, Chan-Hee;Kim, Bum-Sik;Lee, Young-Kook;Jung, Jin-Hwan;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.464-470
    • /
    • 2011
  • In this paper, the feasibility of applying a position sensorless control technique to hybrid electric vehicles (HEVs) is practically evaluated. The proposed position estimator has a straightforward structure with properties that combines the model and the saliency tracking-based rotor position estimation for interior permanent magnet synchronous motors (IPMSMs). The proposed method can be used in the event of sensor loss or sensor recovery to sustain continuity of operations. The developed system takes into account the estimated position transition between two distinct sensorless methods. The transition is enhanced by introducing a synchronized transition algorithm based on a single tracking observer. Extensive experimental results are presented to verify the principles and show a reliable estimation performance over the entire speed range including standstill under 150% load conditions.