• 제목/요약/키워드: position probability

검색결과 292건 처리시간 0.018초

누리호 탑재 위성들의 충돌위험의 예측 및 향후 상황의 대응을 위한 분석 (Conjunction Assessments of the Satellites Transported by KSLV-II and Preparation of the Countermeasure for Possible Events in Timeline)

  • 최승환;유중현;김종원;김성애;신경우;김용일;이재진;최성환;송재욱;김해동;마미순;김덕수
    • 우주기술과 응용
    • /
    • 제3권2호
    • /
    • pp.118-143
    • /
    • 2023
  • 우주공간은 안보공간의 역할에서 상업공간으로 역할을 급속히 넓혀가고 있다. 현실적인 제약들 때문에 늦게 출발했지만 우리나라는 최근 들어 비약적 기술발전과 함께 우주에 대한 국가적 관심이 커지고 있다. 2023년 5월 25일, 누리호는 7개의 위성을 성공적으로 550 km 고도의 태양동기궤도에 배치했다. 그런데, 이 근처 고도에는 이미 스타링크가 4,000대 이상의 위성을 배치시키고 상업적 서비스를 진행하고 있다. 따라서, 누리호 위성들은 스타링크위성들과의 위험상황발생 가능성에 대해 지속적으로 예측하고 만일의 경우에 대해서는 준비를 해야 한다. 본 논문은 누리호 위성들이 임무수행을 위해 궤도비행을 하면서 발생할 수 있는 충돌위험상황에 대해 수행한 연구의 계량적 분석결과를 보고한다. 분석결과에 따르면 누리호 위성들은 하루에 3회 정도 1 km 거리 이내로 스타링크위성에 접근하는 것으로 나타났으며, 이 상황에서의 충돌확률은 1.0E-5 이상인 것으로 계산되었고 크게는 1.0E-2 이상인 경우도 발생하고 있다. 2013년에 발사된 후 성공적으로 임무를 수행하고 있는 아리랑 5호에 대한 본 연구의 비교분석은 아리랑 5호와 누리호 위성들이 위험상황의 분포에 있어 중요한 차이가 있음을 보여준다. 본 연구는 스타링크가 회피기동을 할 때의 비용에 대한 계량적인 분석결과도 보고하며, 후발주자로서 우주산업에 진입하는 우리나라가 고려해야 할 전략도 제시했다. SpaceMap사에서 개발한 AstroOne 프로그램을 분석도구로 사용했으며, Celestrak사의 Socrates Plus에서 보고한 결과와 비교검증하였다. 우주물체데이터는 TLE(two line element)를 사용했다.

머신러닝 기반 기업부도위험 예측모델 검증 및 정책적 제언: 스태킹 앙상블 모델을 통한 개선을 중심으로 (Machine learning-based corporate default risk prediction model verification and policy recommendation: Focusing on improvement through stacking ensemble model)

  • 엄하늘;김재성;최상옥
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.105-129
    • /
    • 2020
  • 본 연구는 부도위험 예측을 위해 K-IFRS가 본격적으로 적용된 2012년부터 2018년까지의 기업데이터를 이용한다. 부도위험의 학습을 위해, 기존의 대부분 선행연구들이 부도발생 여부를 기준으로 사용했던 것과 다르게, 본 연구에서는 머튼 모형을 토대로 각 기업의 시가총액과 주가 변동성을 이용하여 부도위험을 산정했으며, 이를 통해 기존 방법론의 한계로 지적되어오던 부도사건 희소성에 따른 데이터 불균형 문제와 정상기업 내에서 존재하는 부도위험 차이 반영 문제를 해소할 수 있도록 하였다. 또한, 시장의 평가가 반영된 시가총액 및 주가 변동성을 기반으로 부도위험을 도출하되, 부도위험과 매칭될 입력데이터로는 비상장 기업에서 활용될 수 있는 기업 정보만을 활용하여 학습을 수행함으로써, 포스트 팬데믹 시대에서 주가 정보가 존재하지 않는 비상장 기업에게도 시장의 판단을 모사하여 부도위험을 적절하게 도출할 수 있도록 하였다. 기업의 부도위험 정보가 시장에서 매우 광범위하게 활용되고 있고, 부도위험 차이에 대한 민감도가 높다는 점에서 부도위험 산출 시 안정적이고 신뢰성 높은 평가방법론이 요구된다. 최근 머신러닝을 활용하여 기업의 부도위험을 예측하는 연구가 활발하게 이루어지고 있으나, 대부분 단일 모델을 기반으로 예측을 수행한다는 점에서 필연적인 모델 편향 문제가 존재하고, 이는 실무에서 활용하기 어려운 요인으로 작용하고 있다. 이에, 본 연구에서는 다양한 머신러닝 모델을 서브모델로 하는 스태킹 앙상블 기법을 활용하여 개별 모델이 갖는 편향을 경감시킬 수 있도록 하였다. 이를 통해 부도위험과 다양한 기업정보들 간의 복잡한 비선형적 관계들을 포착할 수 있으며, 산출에 소요되는 시간이 적다는 머신러닝 기반 부도위험 예측모델의 장점을 극대화할 수 있다. 본 연구가 기존 머신러닝 기반 모델의 한계를 극복 및 개선함으로써 실무에서의 활용도를 높일 수 있는 자료로 활용되기를 바라며, 머신러닝 기반 부도위험 예측 모형의 도입 기준 정립 및 정책적 활용에도 기여할 수 있기를 희망한다.