• Title/Summary/Keyword: position prediction

Search Result 537, Processing Time 0.04 seconds

Dynamic deflection monitoring of high-speed railway bridges with the optimal inclinometer sensor placement

  • Li, Shunlong;Wang, Xin;Liu, Hongzhan;Zhuo, Yi;Su, Wei;Di, Hao
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.591-603
    • /
    • 2020
  • Dynamic deflection monitoring is an essential and critical part of structural health monitoring for high-speed railway bridges. Two critical problems need to be addressed when using inclinometer sensors for such applications. These include constructing a general representation model of inclination-deflection and addressing the ill-posed inverse problem to obtain the accurate dynamic deflection. This paper provides a dynamic deflection monitoring method with the placement of optimal inclinometer sensors for high-speed railway bridges. The deflection shapes are reconstructed using the inclination-deflection transformation model based on the differential relationship between the inclination and displacement mode shape matrix. The proposed optimal sensor configuration can be used to select inclination-deflection transformation models that meet the required accuracy and stability from all possible sensor locations. In this study, the condition number and information entropy are employed to measure the ill-condition of the selected mode shape matrix and evaluate the prediction performance of different sensor configurations. The particle swarm optimization algorithm, genetic algorithm, and artificial fish swarm algorithm are used to optimize the sensor position placement. Numerical simulation and experimental validation results of a 5-span high-speed railway bridge show that the reconstructed deflection shapes agree well with those of the real bridge.

The Risk Factors Influencing Turnover Intention of Nurses (간호사의 이직의도에 영향을 미치는 예측 요인)

  • Jeong, Jeong-Hee;Kim, Kyung-Hee;Kim, Ji-Su
    • Journal of Korean Academy of Nursing Administration
    • /
    • v.14 no.1
    • /
    • pp.35-44
    • /
    • 2008
  • Purpose: This study was done to identify the risk factors influencing turnover intention of nurses. Method: The participants in this descriptive survey on causal relations were 756 nurses who were working at a tertiary university hospital in Seoul. The data were put in to multiple regression analysis to build a prediction model. Results: Turnover intention according to general features were shown as following.: Age, Clinical careers, Educational level, Marital status, Economic status(Yearly income). The relationship between turnover intention and job stress had positive correlation. But the relationship between turnover and other factors that job satisfaction, internal marketing, and organizational commitment had negative correlation. The causal factors of turnover intention were organizational commitment, the factors of organizational support and patient/caregiver relationships among subcategories of job stress and the factor of professional position among subcategories of job satisfaction. Conclusions: The findings of study suggest that board intervention program should be provided to prevent problems of turnover. It is also recommended that a program be developed that can help control the variables identified in this study along with follow up study to verify the model.

  • PDF

A LONGITUDINAL STUDY ON PREDICTION OF ERUPTIVE PATH AND IMPACTION OF MAXILLARY CANINE (상악견치(上顎犬齒)의 맹출로예측(萌出路豫測) 및 매복(埋伏)에 관(關)한 누년적(累年的) 연구(硏究))

  • Son, Tae-Won;Lee, Dong-Joo
    • The korean journal of orthodontics
    • /
    • v.22 no.1
    • /
    • pp.159-168
    • /
    • 1992
  • To predict eruptive path of maxillary canine, 13 male and 11 female malocclusions were longitudinally studied for 4 years. And to study frequency and distribution of impaction of maxillary canine, 1500 malocclusions were studied. The path, velocity and duration of maxillary canine eruption were determined by periodic angular and linear measurement using periodic orthopantomograms and cephalograms. The following results were obtained. 1. Maxillary canine was erupted with $14.5^{\circ}$ distal tipping from initial stage $98.1^{\circ}$ to final stage $83.6^{\circ}$ of axial inclination on orthopantomogram. 2. Eruptive velocity of maxillary canine was fastest on stage 4, and mean eruptive velocity was 10.5mm per year on stage 4. 3. Eruption of maxillary canine was completed 12 year 5 months in male and 11 years 8 months in female. 4. To predict the duration for eruption completion by position of maxillary canine on cephalogram, regression equation was obtained. 5. Frequency of impaction of maxillary canine was 1.47% in malocclusion and more frequent in male. Distribution of buccal and palatal, right and left impaction was no different, but unilateral impaction was more frequent.

  • PDF

CONSIDERATION OF TRANSVERSE MOVEMENT OF POSTERIOR MAXILLA IN ORTHOGNATHIC SURGERY OF FACIAL ASYMMETRY : CASE REPORTS (안모 비대칭 환자의 악교정수술에서 상악 후방부의 수평이동에 대한 고려)

  • Chang, Hyun-Ho;Yoon, Seok-Chae;Rhyu, Sung-Ho;Kim, Jae-Seung
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.2
    • /
    • pp.172-178
    • /
    • 2000
  • When we establish treatment planning of facial asymmetry, we must predict each asymmetrical element that will be changed upon coronal, axial, sagittal plane. At the visual point, prediction of the change of coronal plane is most important. It is important difference between Rt. and Lt. mandibular angle belonging to posterior coronal plane, as well as anterior coronal plane, such as upper and lower incisor, or midline of chin point. Several methods for control bulk of mandibular angle are additional angle shaving after osteotomy, grinding contact area between proximal and distal segment for decrease the volume, or bone graft for increase the volume. But, at the point of bimaxillary surgery, transverse position of posterior maxilla is an important factor for control it. So, we would report transverse movement of posterior maxilla for decrease asymmetry on the posterior coronal plane of face, that is, asymmetry of mandibular angular portion.

  • PDF

Heat Evaluation System in Concrete Considering Evaporation Heat (기화열을 고려한 콘크리트의 온도평가시스템 개발)

  • Lee, Tae-Gyu
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.12
    • /
    • pp.604-611
    • /
    • 2015
  • When the moisture in concrete member evaporates by high temperature, the evaporation heat which absorbs surrounding temperature occurs. The incremental rate of the internal temperature in concrete is reduced due to the evaporation heat in spite of continuously increasing external temperature. Therefore, this paper has proposed the evaluation algorithm for predicting the internal temperature of concrete members considering the evaporation heat under the high temperature. Finite element method is employed to facilitate thermal analysis for any position of member. To demonstrate the validity of this numerical procedure, the prediction by the proposed algorithm is compared with the test results of other researchers. The proposed algorithm shows a good agreement with the experimental results including the phenomenon that temperature is lost by the evaporation heat.

An improved plasma model by optimizing neuron activation gradient (뉴런 활성화 경사 최적화를 이용한 개선된 플라즈마 모델)

  • 김병환;박성진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.20-20
    • /
    • 2000
  • Back-propagation neural network (BPNN) is the most prevalently used paradigm in modeling semiconductor manufacturing processes, which as a neuron activation function typically employs a bipolar or unipolar sigmoid function in either hidden and output layers. In this study, applicability of another linear function as a neuron activation function is investigated. The linear function was operated in combination with other sigmoid functions. Comparison revealed that a particular combination, the bipolar sigmoid function in hidden layer and the linear function in output layer, is found to be the best combination that yields the highest prediction accuracy. For BPNN with this combination, predictive performance once again optimized by incrementally adjusting the gradients respective to each function. A total of 121 combinations of gradients were examined and out of them one optimal set was determined. Predictive performance of the corresponding model were compared to non-optimized, revealing that optimized models are more accurate over non-optimized counterparts by an improvement of more than 30%. This demonstrates that the proposed gradient-optimized teaming for BPNN with a linear function in output layer is an effective means to construct plasma models. The plasma modeled is a hemispherical inductively coupled plasma, which was characterized by a 24 full factorial design. To validate models, another eight experiments were conducted. process variables that were varied in the design include source polver, pressure, position of chuck holder and chroline flow rate. Plasma attributes measured using Langmuir probe are electron density, electron temperature, and plasma potential.

  • PDF

Evaluating High-Degree-and-Order Gravitational Harmonics and its Application to the State Predictions of a Lunar Orbiting Satellite

  • Song, Young-Joo;Kim, Bang-Yeop
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.247-256
    • /
    • 2015
  • In this work, an efficient method with which to evaluate the high-degree-and-order gravitational harmonics of the non-sphericity of a central body is described and applied to state predictions of a lunar orbiter. Unlike the work of Song et al. (2010), which used a conventional computation method to process gravitational harmonic coefficients, the current work adapted a well-known recursion formula that directly uses fully normalized associated Legendre functions to compute the acceleration due to the non-sphericity of the moon. With the formulated algorithms, the states of a lunar orbiting satellite are predicted and its performance is validated in comparisons with solutions obtained from STK/Astrogator. The predicted differences in the orbital states between STK/Astrogator and the current work all remain at a position of less than 1 m with velocity accuracy levels of less than 1 mm/s, even with different orbital inclinations. The effectiveness of the current algorithm, in terms of both the computation time and the degree of accuracy degradation, is also shown in comparisons with results obtained from earlier work. It is expected that the proposed algorithm can be used as a foundation for the development of an operational flight dynamics subsystem for future lunar exploration missions by Korea. It can also be used to analyze missions which require very close operations to the moon.

Analysis of the Evaporation Behavior of Resin Droplets in UV-Nanoimprint Process (UV 나노임프린트 공정에서의 수지 액적 증발 거동 분석)

  • Choi, D.S.;Kim, K.D.
    • Transactions of Materials Processing
    • /
    • v.18 no.3
    • /
    • pp.268-273
    • /
    • 2009
  • Ultraviolet nanoimprint lithography (UV-NIL), which is performed at a low pressure and at room temperature, is known as a low cost method for the fabrication of nano-scale patterns. In the patterning process, maintaining the uniformity of the residual layer is critical as the pattern transfer of features to the substrate must include the timed etch of the residual layer prior to the etching of the transfer layer. In pursuit of a thin and uniform residual layer thickness, the initial volume and the position of each droplet both need to be optimized. However, the monomer mixtures of resin had a tendency to evaporate. The evaporation rate depends on not only time, but also the initial volume of the monomer droplet. In order to decide the initial volume of each droplet, the accurate prediction of evaporation behavior is required. In this study, the theoretical model of the evaporation behavior of resin droplets was developed and compared with the available experimental data in the literature. It is confirmed that the evaporation rate of a droplet is not proportional to the area of its free surface, but to the length of its contact line. Finally, the parameter of the developed theoretical model was calculated by curve fitting to decide the initial volume of resin droplets.

Design and Dynamic Behavior Prediction of a 4-DOF Piping Joint (4-자유도 배관 관절의 설계 및 동적 거동 예측)

  • Lee, Yunyong;Kang, Hwankook;Lee, Jong Rim;Lim, Seungchul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.298-307
    • /
    • 2016
  • In the building process of FPSOs(floating production, storage and offloading units) is the increasing demand of high performance piping joints that can be installed on its turret system and maintain smooth and long-term flow of ultra-high pressure crude oil, being subjected to external excitations such as wind and wave on the sea. Following such a trend, in this paper, a new-type piping joint of four effective degrees of freedom has been designed, and its dynamic characteristics predicted through mathematical modeling and computer simulations. Moreover, via an example it was shown how the yaw motion in particular can be independently controlled for future durability test despite strong kinetic couplings.

Study on the Unsteady Wakes Past a Square Cylinder near a Wall

  • Kim Tae Yoon;Lee Bo Sung;Lee Dong Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1169-1181
    • /
    • 2005
  • Experimental and numerical studies on the unsteady wake field behind a square cylinder near a wall were conducted to find out how the vortex shedding mechanism is correlated with gap flow. The computations were performed by solving unsteady 2-D Incompressible Reynolds Averaged Navier-Stokes equations with a newly developed ${\epsilon}-SST$ turbulence model for more accurate prediction of large separated flows. Through spectral analysis and the smoke wire flow visualization, it was discovered that velocity profiles in a gap region have strong influences on the formation of vortex shedding behind a square cylinder near a wall. From these results, Strouhal number distributions could be found, where the transition region of the Strouhal number was at $G/D=0.5{\sim}0.7$ above the critical gap height. The primary and minor shedding frequencies measured in this region were affected by the interaction between the upper and the lower separated shear layer, and minor shedding frequency was due to the separation bubble on the wall. It was also observed that the position (y/G) and the magnitude of maximum average velocity $(u/u_{\infty})$ in the gap region affect the regular vortex shedding as the gap height increases.