• Title/Summary/Keyword: position control system

Search Result 3,682, Processing Time 0.032 seconds

A Dual-mode Pico-positioning System using Active Aerostatic Coupling

  • Mizumoto, Hiroshi;Yabuta, Yoshito;Arii, Shiro;Yabuya, Makoto;Tazoe, Yoichi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.32-37
    • /
    • 2007
  • This paper proposes a dual-mode ultra precision positioning system for machine tools and measuring machines. The objective was to position a machine table with a picometer order of resolution, i.e., pico-positioning. A twist-roller friction drive (TFD) was used in coarse-mode positioning. The TFD, which was driven by an AC servomotor, is a kind of lead screw in mechanical terms, and several centimeters of machine table movement was controlled with a nanometer order of positioning resolution. To eliminate lateral vibration caused by the TFD, an active aerostatic coupling driven by piezoelectric actuators was inserted between the TFD and the machine table. This active aerostatic coupling was also applied as a feed drive device for fine-mode positioning; in the fine mode, the positioning resolution was 50 pm. Factors influencing pico-positioning, such as how noise from displacement sensors and vibrations in the aerostatic guideway affect positioning resolution, are discussed.

An Automatic Weight Measurement of Rope Using Computer Vision

  • Joo, Ki-See
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.1
    • /
    • pp.141-146
    • /
    • 1998
  • Recently, the computer vision such as part measurement, and product inspection is very popular to achieve the factory automation since the labor cost is dramatically increasing. In this paper, the diameter and the length of rope are measured by CCD camera which is orthogonally mounted on the ceiling. Two parameters which are the diameter and the length of rope are used to measure the weight of rope. If the weight of rope is reached to predetermined weight, the information is transmitted to PLC(programmable logic control) to cut the rope on the wheel. The cutting machine cuts the rope according to the information obtained from the CCD camera. To measure the diameter and length of rope on real time, the searching space for image segmentation is restricted the predetermined area according to the camera calibration position. Finally, to estimate the weight of rope, the knowledge base system which depends on the diameter, the length of rope, and weight relation between these information are constructed according to diameters of rope. This method contributes to achieve the factory automation, and reduce the production cost since the operators are unnecessary to measure the weight of rope by try-and-error method.

  • PDF

Optimization of Redundancy by using Genetic Algorithm for Reliability of Plant Protection Controller (플랜트 보호 제어기의 신뢰도분석과 유전알고리듬을 이용한 다중성의 최적화)

  • Yu, Dong-Wan;Kim, Dong-Hun;Park, Hui-Yun;Gu, In-Su;Seo, Bo-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.9
    • /
    • pp.504-511
    • /
    • 2000
  • The reliability of system is to become a important concern in developed industry. The controller based on the reliability is so important position. PPC(Plant Protection Controller) is for plant protection and human life by fault detection and control action against the transient condition of plant. The protection system of the nuclear reactor and chemical reactor are representative of PPC. This paper presents analysis of PPC relaibility formal problem statement of optimal redundancy based on the reliability for PPC. And the problem is optimized by genetic algorithm, The genetic algorithms is useful algorithm in case of large searching complex gradient existence local minimum. The genetic algorithms is useful algorithm is case of large searching complex gradient existence local minimum. The ability and effectiveness of the proposed optimization is demonstrated by the target reliability of one channel. PPC. using the failure rate based on the MIL-HDBK-217

  • PDF

Design of Roll-Screen System Using Ultrasonic Motor (초음파 모터를 이용한 롤-스크린 시스템 설계)

  • Kim, Jeong-Do;Jung, Woo-Suk;Ham, Yu-Kyung;Kim, Dong-Jin;Hong, Chul-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.122-130
    • /
    • 2005
  • For silent operation, Roll-Screen has been designed by using piezolelectric ultrasonic motor. To drive the ultrasonic motor, a digitally controlled drive system has been designed by using PLD. And to measure the position and velocity of Roll-Screen, encoder with 36 pulse/revolution is used. This paper proposed a new method for a precise velocity control of ultrasonic motor, in spite of using low-level encoder. The proposed method use a non-fixed sampling time and compensate the initial nonlinear characteristics of ultrasonic motors.

Adaptive TMS Variable Area Flow Meters (적응형 TMS 면적식 유량계)

  • Kwak, Doo-Sung;Kim, On;Cho, Ki-Ryang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.3
    • /
    • pp.590-595
    • /
    • 2008
  • A new adaptive TMS variable area flow meter that is used to the environment measuring equipment is proposed. This system is consist of a ball moving within the tube line which corresponds to gas flow and photo sensor array which monitoring the movement of ball. This system can monitoring the position of bali in case of the very few gas flow in various levels. And it can automatically adjust the gas flow at the highest and the lowest level to prevent the tube line blockage.

Evaluation of Longitudinal Static Stability of Human Powered Hydrofoil Boat (인력 수중익선의 정적 종안정성 평가)

  • Choi, Jung-Kyu;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.4
    • /
    • pp.391-397
    • /
    • 2009
  • In this paper, longitudinal static stability is investigated, which is an essential requirement for the safety and the performance of the human powered hydrofoil boat (HPHB). In case a disturbance changes the trim angle of the boat, the derivative of the moment about the center of gravity must be negative in order to make the boat to be stable. The equation to evaluate the longitudinal static stability of the EPISODE, a HPHB of Chungnam National University with a height controlling system(HCS) is derived. From the derivative it is confirmed that a longitudinal and vertical position of the center of gravity is important for a HPHB. The range of a trim angle while the boat is foil-born was found with a HCS under the condition of mechanical restraint. And it is confirmed that the longitudinal static stability is satisfied for EPISODE in certain range of a trim angle. It is also shown that the longitudinal static stability and a range of the trim angle can be determined from the principal dimensions of a HPHB, therefore, it can be applied from the stage of the conceptual design of HPHB.

A Study on the Optimum Machining Conditions and Energy Efficiency of a Laser-Assisted Fillet Milling

  • Woo, Wan-Sik;Lee, Choon-Man
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.593-604
    • /
    • 2018
  • Laser-assisted machining (LAM) is known to be an effective and economical technique for improving the machinability of difficult-to-machine materials. In the LAM method, material is preheated using a laser heat source and then the preheated area is removed by following cutting tool. For laser-assisted turning (LAT), the configuration of the system is not complicated because laser irradiates from a fixed position. In contrast, laser-assisted milling (LAMill) system is not only complicated but also difficult to control because laser heat source must always move ahead of the cutting tool along a three dimensional (3D) tool path. LAMill is still early stage and cannot yet be used to machine finished products with 3D shapes. In this study, a laser-assisted fillet milling process was developed for machining 3D shapes. There are no prior studies combining fillet milling and LAMill. Laser-assisted fillet milling strategy was proposed, and effective depth of cut (EDOC) was obtained using thermal analysis. Experiments were designed using response surface method and cutting force prediction equations were developed using statistical analysis and regression analysis. The optimum machining conditions were also proposed, and energy efficiency of the LAMill was analyzed by comparing the specific cutting energy of conventional machining (CM) and LAMill.

Performance Comparison of Depth Map Based Landing Methods for a Quadrotor in Unknown Environment (미지 환경에서의 깊이지도를 이용한 쿼드로터 착륙방식 성능 비교)

  • Choi, Jong-Hyuck;Park, Jongho;Lim, Jaesung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.9
    • /
    • pp.639-646
    • /
    • 2022
  • Landing site searching algorithms are developed for a quadrotor using a depth map in unknown environment. Guidance and control system of Unmanned Aerial Vehicle (UAV) consists of a trajectory planner, a position and an attitude controller. Landing site is selected based on the information of the depth map which is acquired by a stereo vision sensor attached on the gimbal system pointing downwards. Flatness information is obtained by the maximum depth difference of a predefined depth map region, and the distance from the UAV is also considered. This study proposes three landing methods and compares their performance using various indices such as UAV travel distance, map accuracy, obstacle response time etc.

Integrity, Orbit Determination and Time Synchronisation Algorithms for Galileo

  • Merino, M.M. Romay;Medel, C. Hernandez;Piedelobo, J.R. Martin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.9-14
    • /
    • 2006
  • Galileo is the European Global Navigation Satellite System, under civilian control, and consists on a constellation of medium Earth orbit satellites and its associated ground infrastructure. Galileo will provide to their users highly accurate global positioning services and their associated integrity information. The elements in charge of the computation of Galileo navigation and integrity information are the OSPF (Orbit Synchronization Processing Facility) and IPF (Integrity Processing Facility), within the Galileo Ground Mission Segment (GMS). Navigation algorithms play a key role in the provision of the Galileo Mission, since they are responsible for computing the essential information the users need to calculate their position: the satellite ephemeris and clock offsets. Such information is generated in the Galileo Ground Mission Segment and broadcast by the satellites within the navigation signal, together with the expected a-priori accuracy (SISA: Signal-In-Space Accuracy), which is the parameter that in fault-free conditions makes the overbounding the predicted ephemeris and clock model errors for the Worst User Location. In parallel, the integrity algorithms of the GMS are responsible of providing a real-time monitoring of the satellite status with timely alarm messages in case of failures. The accuracy of the integrity monitoring system is characterized by the SISMA (Signal In Space Monitoring Accuracy), which is also broadcast to the users through the integrity message.

  • PDF

Development of a muon detector based on a plastic scintillator and WLS fibers to be used for muon tomography system

  • Chanwoo Park;Kyu Bom Kim;Min Kyu Baek;In-soo Kang;Seongyeon Lee;Yoon Soo Chung;Heejun Chung;Yong Hyun Chung
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1009-1014
    • /
    • 2023
  • Muon tomography is a useful method for monitoring special nuclear materials (SNMs) such as spent nuclear fuel inside dry cask storage. Multiple Coulomb scattering of muons can be used to provide information about the 3-dimensional structure and atomic number(Z) of the inner materials. Tomography using muons is less affected by the shielding material and less harmful to health than other measurement methods. We developed a muon detector for muon tomography, which consists of a plastic scintillator, 64 long wavelength-shifting (WLS) fibers attached to the top of the plastic scintillator, and silicon photomultipliers (SiPMs) connected to both ends of each WLS fiber. The muon detector can acquire X and Y positions simultaneously using a position determination algorithm. The design parameters of the muon detector were optimized using DETECT2000 and Geant4 simulations, and a muon detector prototype was built based on the results. Spatial resolution measurement was performed using simulations and experiments to evaluate the feasibility of the muon detector. The experimental results were in good agreement with the simulation results. The muon detector has been confirmed for use in a muon tomography system.