• Title/Summary/Keyword: position control system

Search Result 3,682, Processing Time 0.03 seconds

Development of an Automatic Seeding System Using Machine Vision for Seed Line-up of Cucurbitaceous Vegetables (기계시각을 이용한 박과채소 종자 정렬파종시스템 개발)

  • Kim, Dong-Eok;Cho, Han-Keun;Chang, Yu-Seob;Kim, Jong-Goo;Kim, Hyeon-Hwan;Son, Jae-Ryoung
    • Journal of Biosystems Engineering
    • /
    • v.32 no.3
    • /
    • pp.179-189
    • /
    • 2007
  • Most of the seeds of cucurbitaceous rootstock species used for grafting were mainly sown by hand. This study was carried out to develop an on-line discriminating algorithm of seed direction using machine vision and an automatic seeding system. The seeding system was composed of a supplying device, feeding device, machine vision system, reversing device, seeding device and system control section. Machine vision was composed of a color CCD camera, frame grabber, image inspection chamber, lighting and personal computer. The seed image was segmented into a region of seed part and background part using thresholding technique in which H value of HSI color coordinate system. A seed direction was discriminated by comparing position between the center of circumscribed rectangle to a seed and the center of seed image. It took about 49ms to identify and redirect seed. Line-up status of seed was good the more than 95% of a sowed seed. Seeding capacity of this system was shown to be 10,140 grains per hour, which is three times faster than that of a typical worker.

A Study on Design and Manufacture of an Inchworm Linear Motor System (인치웜 리니어 모터 시스템 설계 및 제작에 관한 연구)

  • Ye Sang Don;Jeong Jae Hoon;Min Byeong Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.174-181
    • /
    • 2004
  • Ultra precision positioning mechanism has widely been used on semiconductor manufacturing equipments, optical spectrum analyzer and cell manipulations. Ultra precision positioning mechanism is consisted of several actuators, sensors, guides and control systems. Its efficiency depends on each performance of components. The object of this study is to design, analysis and manufacture all of the inchworm linear motor system, which is one of the equipments embodied in ultra precision positioning mechanism. Inchworm linear motor system is consisted of a controller system and an inchworm linear motor, and its driving form is similar to a motion of spanworm. A design and manufacture of inchworm linear motor, which is consisted of three PZT actuators, a rod, two columns and a guide plate, are performed. Minimizing the von-Mises stress of the hinge using Taguchi method and simulation by FEM software optimizes the structural design in a column of flexure hinge. The designed columns and guide plates are manufactured by a W-EDM and NC-milling. A controller system, which is an apparatus to drive inchworm linear motor, can easily adjust driving conditions by varying resonance frequency and input-output voltage of actuators and amplifiers. The performance of manufactured inchworm linear motor system is verified and valuated. In the future, inchworm linear motor system will be used to make a more precision positioning by reinforcing a sensor and feedback system.

Implementation of Precise Drone Positioning System using Differential Global Positioning System (차등 위성항법 보정을 이용한 정밀 드론 위치추적 시스템 구현)

  • Chung, Jae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.14-19
    • /
    • 2020
  • This paper proposes a precise drone-positioning technique using a differential global positioning system (DGPS). The proposed system consists of a reference station for error correction data production, and a mobile station (a drone), which is the target for real-time positioning. The precise coordinates of the reference station were acquired by post-processing of received satellite data together with the reference station location data provided by government infrastructure. For the system's implementation, low-cost commercial GPS receivers were used. Furthermore, a Zigbee transmitter/receiver pair was used to wirelessly send control signals and error correction data, making the whole system affordable for personal use. To validate the system, a drone-tracking experiment was conducted. The results show that the average real-time position error is less than 0.8 m.

A Study on the Application of Real-time Environment Monitoring System in Underground Mines using Zigbee Technology (지그비 기술을 이용한 지하광산 내 실시간 환경 모니터링 시스템 현장 적용 연구)

  • Park, Yo Han;Lee, Hak Kyung;Seo, Man Keun;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.29 no.2
    • /
    • pp.108-123
    • /
    • 2019
  • In recent years, as safety management in underground mines has become more important in the worldwide, mine safety management technologies combining information communication technology such as real-time worker position tracking, monitoring system and equipment remote control have been developed. Wireless communication system is mainly applied to these technologies for the flexibility of network configuration. There are some cases the monitoring system was installed in domestic underground mines, but, it is necessary to develop the technology more suitable for domestic mining standard. In this study, we developed the real-time environmental monitoring system using ZigBee technology and examined the result of application to domestic limestone mine. Furthermore, applicability of the developed environment monitoring system to $VentSim^{TM}$ LiveView was checked. This study is expected to contribute to the related studies like the optimization of the ventilation system in underground mines.

PID-based Consensus and Formation Control of Second-order Multi-agent System with Heterogeneous State Information (이종 상태 정보를 고려한 이차 다개체 시스템의 PID 기반 일치 및 편대 제어)

  • Min-Jae Kang;Han-Ho Tack
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.103-111
    • /
    • 2023
  • Consensus, that aims to converge the states of agents to the same states through information exchanges between agents, has been widely studied to control the multi-agent systems. In real systems, the measurement variables of each agent may be different, the loss of information across communication may occur, and the different networks for each state may need to be constructed for safety. Moreover, the input saturation and the disturbances in the system may cause instability. Therefore, this paper studies the PID(Proportional-Integral-Derivative)-based consensus control to achieve the swarm behavior of the multi-agent systems considering the heterogeneous state information, the input saturations, and the disturbances. Specifically, we consider the multiple follower agents and the single leader agent modeled by the second-order systems, and investigate the conditions to achieve the consensus based on the stability of the error system. It is confirmed that the proposed algorithm can achieve the consensus if only the connectivity of the position graph is guaranteed. Moreover, by extending the consensus algorithm, we study the formation control problem for the multi-agent systems. Finally, the validity of the proposed algorithm was verified through the simulations.

Development of a Framework for Anti-Collision System of Moving Drilling Machines on a Drill Floor (시추 작업장의 이동식 시추 장비 충돌 방지 시스템을 위한 프레임워크 개발)

  • Lee, Jaeyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.330-336
    • /
    • 2020
  • An anti-collision system between equipment is essential on a drill floor where multiple moving machines are operated simultaneously. This is to prevent accidents by halting the machines when required, by inspecting possibility of a collision based on the relative position data sent by the equipment. In this paper, we propose a framework for an Anti-Collision System (ACS) by considering expandability of the number of machines and computational speed, to promote development of drilling machines and corresponding ACS software. Each drilling equipment is represented as an object in the software with its own message format, and the message is constructed with serialization/deserialization to manage any additional equipment or data. The data handling process receives the current status of machines from the drilling control network, and relays a collision related message (including bypass signal) back to the machines. A commercial visualization software shows the bounding boxes moving with the equipment and indicates probable collision. It has been determined that the proposed system maintains total execution time below 5ms to process data from the network and relay the information hence, the system has no effect on the machine control systems having 100ms control cycle.

The Study on Design of Circuit Card Assembly on Servo Control Unit for Automated Resupply Vehicle K56 (K56 탄약운반장갑차용 서보제어기의 회로카드조립체 설계에 관한 연구)

  • Lee, Ju-Seung;Kim, Seong-Jin;Bae, Gong-Myeong;Kwon, Soon-Mo;Park, Hyean-Jo;Choi, Jun-Sok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.102-109
    • /
    • 2019
  • This paper describes the design of the circuit card assembly to eliminate the communication error on a servo control unit installed in the automated resupply vehicle K56. K56 is a weapon system that automates the supply and loading of ammunition on the K-55A1 self-propelled artillery. As the core item responsible for ammunition movement control, the servo control unit is required to have good communication stability and reliability, but the conventional unit has recognized a problem that communication error intermittently occurs, resulting in an emergency stop phenomenon. We analyzed the communication signal of the servo control unit and identified the failure cause of the circuit card assembly to solve this problem. In addition, the signal interference in data/address line of the circuit card assembly was confirmed through analysis of the failure cause, and redesigned to avoid the interference, such as adjustment of the distance between communication lines and position change. Finally, the proposed cause analysis and redesign were verified through the component of servo control unit and attachment test on K56. We expected these study results to be used as reference for the design of other similar items.

Experts View and Recommendation for Management and Operation of National Health Promotion Fund (국민건강증진기금 운영과 개선방향에 대한 전문가의 인식)

  • Kim, Hye-Ryun;Yeo, Jiyoung
    • Korean Journal of Health Education and Promotion
    • /
    • v.31 no.3
    • /
    • pp.83-95
    • /
    • 2014
  • Objectives: This study was to examine the experts perception on the operation of the national health promotion fund and related policies, and to obtain the perspective on the improving governance of the fund. Methods: Experts opinion survey was recruited 120 experts who were public health officials, and members of board in academic societies related to health promotion and health policy, and 60 experts participated in the survey. Results: Most health care experts agreed that the current allocation of health promotion fund was not optimal with its lack of allocation on promoting healthy lifestyle and R&D for health promotion, while the majority of the fund was being spent on supporting national health insurance. Thus, establishing governance system and control tower for the fund was viewed as critical. Also the status of deliberation committee should be raised to higher position where it can hold practical authority to plan and evaluate fund spending. Conclusions: The priority of health promotion fund spending should be more on improving health such as modifying life-style and spreading healthy habits, rather than on disease management or subsidizing health insurance. It is recommended that change from to environment in health promotion policy regime is required to establish effective governance system for the fund operation.

Using SDU Slip/Slide Control (SDU 장치를 이용한 Slip/Slide 제어방안)

  • Park, Ju-Yeon;Kang, Deok-Won;Lee, Jong-Seong
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.377-383
    • /
    • 2011
  • The paper is to perceive accurately speed of the train through redundant processor operation. When Slip/slide is occurred at the axle, the train is applied brake force using the Tachometer and the Doppler sensor which assistance equipment. One of the main features of railway signaling system is that rolling stock is made stop to avoid collision with the rolling stock ahead when the rolling stock exceeds its maximum operating speed in line. In addition, in the case of the rolling stock with automatic train operation, it carries out activities such as braking and propulsion using the difference between its actual speed and target speed at the point. To perform these functions, it is essential to calculate the exact speed of the rolling stock in signaling equipment on vehicles. Train speed detection unit are composed of the Tachometer and the Doppler sensor, and speed information is sent to the SDU unit. The processor of SDU unit calculates the speed of the train using compare logic the received speed information. Even if there are Slip/Slide, signaling system is available to apply exact braking, to improve stop on position and to guarantee the safety of trains.

  • PDF

Analysis on Torque, Flowrate, and Volumetric Displacement of Gerotor Pump/Motor

  • Yun, Hongsik;Ham, Young-Bog;Kim, Sungdong
    • Journal of Drive and Control
    • /
    • v.17 no.2
    • /
    • pp.28-37
    • /
    • 2020
  • It is difficult to analytically derive the relationship among volumetric displacement, flowrate, torque, and rotation speed regarding an instantaneous position of gerotor hydraulic pumps/motors. This can be explained by the geometric shape of the rotors, which is highly complicated. Herein, an analytical method for the instantaneous torque, rotation speed, flowrate, and volumetric displacement of a pump/motor is proposed. The method is based on two physical concepts: energy conservation and torque equilibrium. The instantaneous torque of a pump/motor shaft is determined for the posture of rotors from the torque equilibrium. If the torque equilibrium is combined with the energy conservation between the hydraulic energy of the pump/motor and the mechanical input/output energy, the formula for determining the instantaneous volumetric displacement and flowrate is derived. The numerical values of the instantaneous volumetric displacement, torque, rotation speed, and flowrate are calculated via the MATLAB software programs, and they are illustrated for the case in which inner and outer rotors rotate with respect to fixed axes. The degrees of torque fluctuation, speed fluctuation, and flowrate fluctuation can be observed from their instantaneous values. The proposed formula may provide a better understanding of the design or analysis process of gerotor pumps/motors.