• Title/Summary/Keyword: position control system

Search Result 3,682, Processing Time 0.029 seconds

Wafer 반송용 End-Effector의 설계 및 파지력 제어에 관한 연구

  • 권오진;최성주;이우영;이강원
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2003.05a
    • /
    • pp.80-87
    • /
    • 2003
  • On this study, an End-Effector for the 300mm wafer transfer robot System is newly suggested. It is a mechanical type with $180^{\circ}$ rotating ranges and is composed of 3-point arms, two plate springs and single-axis DC motor. It is controlled by microchip for the DC motor control. To design, relationships on the gripping force and the wafer deformation is analyzed by FEM analysis. Criterion on gripping force of a suggested End-Effector is confirmed as $255 ~ 274g_f$ from experimental results. From experimented results on repeatable position accuracy, gripping force and gripping cycle times in a wafer cleaning system, we confirmed that the suggested End-Effector is well satisfied on the required performance for 300mm wafer transfer robot system.

  • PDF

A Study on the Point Placement Task of Robot System Based on the Vision System (비젼시스템을 이용한 로봇시스템의 점배치실험에 관한 연구)

  • Jang, Wan-Shik;You, Chang-gyou
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.175-183
    • /
    • 1996
  • This paper presents three-dimensional robot task using the vision control method. A minimum of two cameras is required to place points on end dffectors of n degree-of-freedom manipulators relative to other bodies. This is accomplished using a sequential estimation scheme that permits placement of these points in each of the two-dimensional image planes of monitoring cameras. Estimation model is developed based on a model that generalizes known three-axis manipulator kinematics to accommodate unknown relative camera position and orientation, etc. This model uses six uncertainty-of-view parameters estimated by the iteration method.

  • PDF

The Comparison of Kinematic Data of the Body Orientation in Sitting Position to Adapt Dynamically Changing Angle of the Base of Support in Stroke Patients and Healthy Adults (뇌졸중 환자와 정상 성인의 앉은 자세에서 지지면의 동적 각도 변화에 적응하는 신체 정위의 운동형상학적 비교)

  • Song, In-Su;Choi, Jong-Duk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3513-3520
    • /
    • 2012
  • This study aimed to investigate the difference of the body orientation ability in sitting position to adapt to dynamically changing angle of the base of support in stroke patients and Healthy adults. The angle between vertical and head and trunk in 12 stroke patients (6 male and 6 female) and 12 healthy adults (6 male and 6 female) were measured by video motion analysis system. The head and trunk angle between stroke patients and healthy adults in sitting position were significantly different when increase the angle of dominant side(p<.05). The head and trunk angle between stroke patients and healthy adults in sitting position were significantly different when increase the angle of non-dominant side(p<.05). The head and trunk angle between stroke patients and healthy adults in sitting position were significantly different when decrease the angle of non-dominant side(p<.05). The head angle between stroke patients and healthy adults in sitting position was significantly different(p<.05), but the trunk angle was not significantly different when decrease the angle of dominant side(p>.05), Stroke patients compared to healthy adults had more deficits in their body orientation ability in sitting position to adapt to dynamically changing angle of the base of support. This finding may help to understand postural control deficits more clearly in stroke patients in sitting position.

A Study on the Magnetic Circuit Design and Control Method of 2-Phase 8-Pole PM Type Linear Pulse Motor (2상(相)8극영구자석형(極永久磁石形) LPM의 자기회로설계(磁氣回路設計)와 제어방식(制御方式)에 관한 연구(硏究))

  • Kim, Il-Jung;Lee, Eun-Woong;Lee, Min-Myeong;Lee, Myeong-Il
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.47-50
    • /
    • 1991
  • LPM(Linear Pulse Motor) provide direct and precise position control of bidirectional linear motion. LPM is not subject to the same linear velocity and acceleration limitations inherent in systems converting rotary to linear motion such as lead screws, rack and pinion, belt and pulley drives. With LPM, all the thrust force generated by the motor is efficiently applied directly to the load. And speed, distance, and acceleration are easily programmed in a highly repeatable fashion. Potential industrial and application fields of LPM include PCB assembly, industrial sewing machines, automatic inspection, coil winder, medical uses, conveyer system, laser cut and trim systems, semiconductor wafer processing, OA instruments etc. This paper describes various design parameter of LPM such as magnetic ciucuit construction methods, phase number and tooth number per pole, permanent magnet and coil mmf, tooth geometries. And to solve the problems of existing control methods, in this paper, a new control method of the LPM is proposed throughout modern control theory.

  • PDF

An Automatic Travel Control of a Container Crane using Neural Network Predictive PID Control Technique (신경회로망 예측 PID 제어법을 이용한 컨테이너 크레인의 자동주행제어)

  • Suh Jin Ho;Lee Jin Woo;Lee Young Jin;Lee Kwon Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.61-72
    • /
    • 2005
  • In this paper, we develop anti-sway control in proposed techniques for an ATC system. The developed algorithm is to build the optimal path of container motion and to calculate an anti-collision path for collision avoidance in its movement to the finial coordinate. Moreover, in order to show the effectiveness in this research, we compared NNP PID controller to be tuning parameters of controller using NN with 2 DOF PID controller. The experimental results for an ATC simulator show that the proposed control scheme guarantees performances, trolley position, sway angle, and settling time in NNP PID controller than other controller. As a result, the application of NNP PID controller is analyzed to have robustness about disturbance which is wind of fixed pattern in the yard. Accordingly, the proposed algorithm in this study can be readily used for industrial applications

Design and Analysis of Fuzzy PID Control for Nonlinear System (비선형 시스템을 위한 퍼지 PID 제어기의 설계 및 해석)

  • Kim, Sung-Ho;Lee, Cheul-Heui
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.650-652
    • /
    • 2000
  • Although Fuzzy Logic Controller(FLC) adopted three terms as input gives better performance. FLC is in general composed of two-term control because of the difficulty in the construction of fuzzy rule base. In this paper, a three-term FLC which is similar to PID control but acts as a nonlinear controller is proposed. To reduce the complexity of the rule base design and increase efficiency, a simplified fuzzy PID control is induced from a hybrid velocity/position type PID algorithm by sharing a common rule base for both fuzzy Pi and fuzzy PD parts. It is simple in structure, easy in implementation, and fast in calculation. The phase plane technique is applied to obtain the rule base for fuzzy two-term control and them. The resultant rule base is Macvicar-Whelan type. The frequency response information is used in tuning of membership functions. Also a tuning strategy for the scaling factors is Proposed based on the relationship between PID gain and them. Simulation results show better performance and the effectiveness of the proposed method.

  • PDF

A Study on the Sensorless Speed Control and Its Application of DC Motor (DC 모터의 센서리스 속도제어 및 그 응용에 관한연구)

  • 하윤수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.292-299
    • /
    • 1999
  • DC motors are widely used in many industrial fields as the actuator of the robot and the driving power motors of the electrical vehicle, Usually in the sensors of DC motors such as the encoder the tachogenerator and the potentiometer etc. are applied, But usage of these sensors results in the increased price and operating cost such that the application of the motors are limitted. To solve this problem another method to construct low cost control system is investigates. In this paper a new speed control method for DC motor is proposed. This method uses motor parameters instead of using speed or position sensors. In this way the angular velocity is estimated by the measure-ment values of the armature voltage and current instead of measuring the sensor signal. This paper presents an alorithm for estimating the angular velocity of DC motor The effectiveness of the proposed method is verified by experimental results. Also the applicability of the proposed method is presented by applying to the velocity contol of a wheeled mobile robot.

  • PDF

Implementation of Adaptive Movement Control for Waiter Robot using Visual Information

  • Nakazawa, Minoru;Guo, Qinglian;Nagase, Hiroshi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.808-811
    • /
    • 2009
  • Robovie-R2 [1], developed by ATR, is a 110cm high, 60kg weight, two wheel drive, human like robot. It has two arms with dynamic fingers. It also has a position sensitive detector sensor and two cameras as eyes on his head for recognizing his surrounding environment. Recent years, we have carried out a project to integrate new functions into Robovie-R2 so as to make it possible to be used in a dining room in healthcare center for helping serving meal for elderly. As a new function, we have developed software system for adaptive movement control of Robovie-R2 that is primary important since a robot that cannot autonomously control its movement would be a dangerous object to the people in dining room. We used the cameras on Robovie-R2's head to catch environment images, applied our original algorithm for recognizing obstacles such as furniture or people, so as to control Roboie-R2's movement. In this paper, we will focus our algorithm and its results.

  • PDF

Study on the Characteristic of Dynamic Postural Control during Horizontal Translation of Support Surface (지지면의 수평 진동에 따른 동적 자세 제어 특성에 관한 연구)

  • Oh, G.Y.;Piao, Y.J.;Kwon, T.K.;Kim, N.G.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.6
    • /
    • pp.495-502
    • /
    • 2009
  • This paper investigated the effects of dynamic postural control for maintaining upright standing on a support surface during continuous sinusoidal horizontal translation in anterior-posterior direction. 15 healthy young subjects participated in this experiment. The analysis of body movement was analyzed using Ariel Performance Analysis System. Motion pattern was analyzed by seven markers on subject's body. Position of markers were head, chest, hip, right knee, left knee, right ankle and left ankle. Seven different frequencies of support surface were employed ; 0.1, 0.25, 0.5, 0.75, 1, 1.5 and 2Hz at 2cm of moving path of motionbase. The experiments were performed dynamic postural reponses at the condition of eye open. The results showed that median frequency of the knee, ankle were increased in all frequency bands. Following the frequency of perturbation increased, postural control strategy was changed from ankle strategy to combined strategy. The experiment results could be applied to the dynamic postural training for the elderly and the rehabilitation training for the patients to improving the ability of postural control.

Design and Evaluation of the Control Performance of a Compliant Arm Support (중력 보상 팔 기능 지지대의 설계 및 제어 성능 평가)

  • Kim, Sang-Hun;Jeong, Useok;Park, Daegeun;Koo, Inwook;Cho, Kyu-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.115-123
    • /
    • 2017
  • This paper presents the design and the control performance of a novel dynamic compliant-arm support with parallel elastic actuators that was developed to assist with the daily living activities of those whose arms are compromised by muscular disease or the aging process. The parallel elastic-arm support consists of a compliant mechanism with combined passive and active components for human interaction and to reach the user's desired positions. The achievement of these tasks requires impedance control, which can change the virtual stiffness, damping coefficients, and equilibrium points of the system; however, the desired-position tracking by the impedance control is limited when the end-effector weight varies according to the equipping of diverse objects. A prompt algorithm regarding weight calibration and friction compensation is adopted to overcome this problem. A result comparison shows that, by accurately assessing the desired workspace, the proposed algorithm is more effective for the accomplishment of the desired activities.