• Title/Summary/Keyword: position control system

Search Result 3,682, Processing Time 0.032 seconds

Implementation of High Speed, Precise Position Control Algorithm for Linear Machine Drive System (선형 전동기 구동 시스템의 고속, 정밀 위치 제어 알고리즘의 구현)

  • 이유인;김준석;김용일
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.139-142
    • /
    • 1999
  • Recently, the application of the linear machine for industrial field is remarkable increased, especially for the gantry machine and machine tool system. In these application, high precise position control performance is essentially required in steady/transient state. This paper presents the generalized PID position control algorithm which have rare sensitivity to mass and disturbance. Through the experimental results, it is shown that the proposed algorithm have good performance for the linear machine drives in the steady state and transient state in spite of the load mass varing.

  • PDF

A Study on Minimum Time Position Control of DC Servo-Motor (DC Servo Motor의 최단시간 위치 제어)

  • 양주호
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.1
    • /
    • pp.39-44
    • /
    • 1992
  • Analog PID controllers have been designed to make good use of position control in industries. Recently, the importance of digital position control is emphasized for the requirements of controller which are not only to control the objects but to include various aspects such as easiness of design and implementation, simple exchange of control program and convenient communications of data between various controllers and a host computer. This study proposes a combined control method which is mixed the vaiable structure control (VSC) with the PI control for minimum time position control of DC servo motor by microcomputer. The results of test by this method show offset-free and minimum time optimal position control which is not affected by the disturbance and the system parameter variations. The validity of the proposed method comparing with the conventional PID control is proved by the response experiments.

  • PDF

Development of controller for anti-swing and position of crane (크레인의 Anti-Swing 및 위치 제어기의 개발)

  • 정승현;권판조;이달해
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.277-281
    • /
    • 1996
  • The roof crane system is used for transporting a variable load to a target position. At this time, the goal of crane system is transporting to a goal position as soon as possible with no rope oscillation. Generally crane is operated by expert's knowledge, but recently automatic control with high speed and rapid transportation is required. In this thesis we developed fuzzy controller of crane which has simplified expert's knowledge base for anti-swing and rapid tansportation to goal position.

  • PDF

Control System of Throttle Actrator for TCS (TCS용 스로틀 액츄에이터 제어 시스템)

  • 송재복;김효준;민덕인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.191-201
    • /
    • 1997
  • Accurate positioning of a throttle valve is required to implement the traction control system(TCS) which improves acceleration performance in slippery roads. In this research, position control system is developed for the main throttle actuator(MTA) system which uses one throttle actuation for small volume and DC servo motor for fast response. In order to drive DC motor, PWM signal generator and PWM amplifier were built and interfaced to the motor and controller. Digital PID control law is used as basic control algorithm. In order to prevent overshoot and improve accuracy, velocity profiles are generated and implemented whenever the targer throttle angle is given from the TCS controller. Thanks to velocity profiles, the control performance was very good and only one set of PID gains was used to cover the entire operating range. Also, the resolution of position is about 0.4$^{\circ}C$, which is better than that of stepping motor also used as throttle actuator in some products. The response time of the developed system is also fast enough to implement the engine control based TCS algorithm.

  • PDF

Position Control of Motor for Yard Crane Drive Using Lonworks network (LonWorks네트워크를 이용한 야드 크레인 구동용 전동기 위치제어)

  • 전태원;최명규;김동식;김홍근;노희철
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.1
    • /
    • pp.37-44
    • /
    • 2001
  • This paper describes the position control method in yard crane drive system using Lonworks network, which is a leading industrial control network. The network is composed of host computer and three motor drive systems for both gantry and trolley position controls of both gantry and trolley are controlled with the simulator of yard crane, the size of which is about 1/10 with the real yard crane.

  • PDF

Development of Real Time Control System of EMD Bracket in Plate Rolling Process (후판 압연 공정에서 Edge Masking Device의 실시간 제어기술 개발)

  • 최일섭;박병현;최승갑
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.170-170
    • /
    • 2000
  • This paper deals with on-Line detection of strip movement and real time positioning of brackets of EMD connected with it. Strip movement is detected by 4 line CCD camera and measured position correction value is inputted to motor position controller to control position of brackets.

  • PDF

A New Variable-Structure Position Control for DC Motor Using Fuzzy Logic (퍼지논리를 이용한 직류전동기용 가변구조 위치제어시스템)

  • 이상래;이광원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.6
    • /
    • pp.625-632
    • /
    • 1992
  • This paper presents a new dc-motor position control approached by Variable Structure System. In order to eliminate a steady-state position error, we propose a switching function composed of position error, velocity, and current ripple. The switching function has an advantage compared to other ones. To determine the control signal voltage, we use a fuzzy logic method. The simulation results show expected performances.

  • PDF

Position / Force Control of Industrial Robots using the Fuzzy PI Algorithm (퍼지 PI 알고리즘을 이용한 산업용 로봇의 위치/힘 제어)

  • Suh, Il-Hong;Hong, Jong-Hyuck;Oh, Sang-Rok;Kim, Kwang-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.795-798
    • /
    • 1991
  • The hybrid positon/force control is required when two or more robots perform a coorperative task in a uncertain environment, or when single robot does a task with a constant force to the environment. In this paper, a new control algorithm which control simultaneously the position and the force are proposed, however, especially the conventional position controller employed in the present robot control is used. Moreover, in order to improve the output response characteristics of the system, the PI gains which were computed from the PI gain tunning techniques, are varied based on the results of the Fuzzy algorithm.

  • PDF

A Study on Gantry Control using Neural Network Two Degree of PID Controller (신경회로망 2 자유도 PID 제어기를 이용한 갠트리 크레인제어에 관한 연구)

  • 최성욱;손주한;이진우;이영진;이권순
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.159-167
    • /
    • 2000
  • During the operation of crane system in the container yard, it is necessary to control the crane trolley position so that the swing of the hanging container is minimized. Recently an automatic control system with high speed and rapid transportation is required. Therefore, we designed a controller to control the crane system with disturbances and weight change. In this paper, we present the neural network two degree of freedom PID controller to control the swing motion and trolley position. Then we executed the computer simulation to verify the performance of the proposed controller and compared the performance of the neural network PID controller with our proposed controller in terms of the rope swing and the precision of position control. Computer simulation results show that the proposed controller has better performances than neural network PID with disturbances.

  • PDF

Adaptive Vibration Control of Flexible One-Lind Manipulator (유연한 단일링크 조작기의 적응진동제어)

  • 박영욱;김재원;박영필
    • Journal of KSNVE
    • /
    • v.5 no.3
    • /
    • pp.385-394
    • /
    • 1995
  • Recently, since robot manipulator becomes faster and lighter, its link is no longer regarded as rigid body, and robot controller which only controls robot position cannot reduce vibration of the flexible link. Therefore vibration control is needed in robot manipulator control in addition to position control. In the case that tip mass changes when robot manipulator in working, it is clear that the efficiency of the vibration/position controller designed for the fixed system goes down. In this paper, the system with time varying parameters, adaptive control theory is adopted which estimates parameters changed by the variation of the tip mass and re-calculates the gain of the controller. Validify of the proposed adaptive controller and capability of the estimator are evaluated by computer simulations and experiments. Comparison results of the optimal controller for the fixed system and proposed adaptive controller and carried out.

  • PDF