• Title/Summary/Keyword: position control loop

Search Result 396, Processing Time 0.027 seconds

AC Servo Motor와 Ball screw를 이용한 정밀 위치제어시스템의 기계적 특성 분석 및 개선

  • Jin, Gyeong-Bok;Go, Su-Chang
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.10a
    • /
    • pp.178-183
    • /
    • 2006
  • Effect of coulomb friction and backlash on the single loop posit ion control has been studied for the precision position control. We studied and showed the limit cycle on the single loop system which used a ball screw that had the backlash. Also, We made an inner loop with a classical velocity and torque controller which was forcing the $i_d$ current to be zero by using a permanent-magnet synchronous motor and composed the outer loop with linear sensor for sensing a position of the loader. We have been shown a good result by using the dual loop through numerical simulation method.

  • PDF

A Study on Tracking Position Control of Pneumatic Actuators Using Neural Network (신경회로망을 이용한 공압구동기의 위치 추종제어에 관한 연구)

  • Gi Heung Choi
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.115-123
    • /
    • 2000
  • Pneumatic actuators are widely used in a variety of hazardous working environments. Any process that involves pneumatic actuation is also recognized as "eco-friendly". In most cases, applications of pneumatic actuators require only point-to-point control. In recent years, research efforts have been directed toward achieving precise position tracking control. In this study, a tracking position control method is proposed and experimentally evaluated for a linear positioning system. The positioning system is composed of a pneumatic actuator and a 3-port proportional valve. The proposed controller has an inner pressure control loop and an outer position control loop. A PID controller with feedback linearization is used in the pressure control loop to nullify the nonlinearity arising from the compressibility of the air. The position controller is also a PID controller augmented with the friction compensation by a neural network. Experimental results indicate that the proposed controller significantly improves the tracking performance.rformance.

  • PDF

Performance Improvement of Position Estimation by Double-PLL Algorithm in Hall Sensor based PMSM Control (Double-PLL을 이용한 홀 센서 기반 PMSM 제어의 위치 추정 성능 개선)

  • Lee, Song-Cheol;Jung, Young-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.3
    • /
    • pp.270-275
    • /
    • 2017
  • This paper proposes a double-phase-locked-loop (PLL) to improve the performance of position estimation in hall sensor-based permanent magnet synchronous motor control. In hall sensor-based control, a PLL is normally used to estimate the rotor position. The proposed Double-PLL consists of two PLLs, including a reset type integrator. The motor control is more accurate and has better performance than conventional PLL, such as a small estimated position ripple. The validity of the proposed algorithm is verified by simulations and experiments.

Robustness of Positive Position Feedback Control in the Independent Modal Space (독립된 모달공간에서 양 위치피드백 제어기법의 강인성)

  • 황재혁;백승호
    • Journal of KSNVE
    • /
    • v.4 no.2
    • /
    • pp.177-185
    • /
    • 1994
  • In this study, the effect of parameter errors on the closed-loop behavior of flexible structure is analyzed for IMSC(Independent Modal Space Control) with PPF(Positive Position Feedback). If the control force designed on the basis of structure model with the parameter errors is applied to control the actual system, the closed-loop performance of the actural system will be degraded depending on the degree of the errors. An asymptotic stability condition has been derived, using Lyapunov approach, which is independent of the dynamic characteristics of the structure being controlled. The extent of deviation of the closed-loop performance from the designed one is also derived and evaluated using operator techniques. It has been found that the extent of the deviation is proportational to the magnitude of the parameter errors, and that the proportional coefficient depends on the control algorithm.

  • PDF

Stability Analysis of Three-Loop Autopilot with respect to IMU Position and C.G Variation Rate in Guided Missiles (IMU 탑재 위치 및 유도탄 무게 중심 변화율에 따른 Three-Loop 조종 알고리듬 안정성 분석)

  • Kwon, Hyuck-Hoon;Kim, Yoon-Hwan;Park, Bong-Gyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.6
    • /
    • pp.492-501
    • /
    • 2016
  • Three-Loop autopilot is generally used for the acceleration control of guided missiles. Because the acceleration command to the three-loop autopilot is given as values at the center of gravity, feedback information of IMU should be obtained at the same position. However, the position of IMU might not be located at the center of gravity due to the sub-system assignment. This paper presents the stability analysis of three-loop autopilot with respect to the arbitrary position of IMU and variation rate of center of gravity. Gain and phase margins are calculated for several trim points for general anti-tank missiles.

An Analytical Study on Control Algorithm for the Precise Position Control of the Actuator System (구동장치의 정밀한 위치제어를 위한 구동제어기법에 대한 해석적 연구)

  • Ahn, Wongeun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.19-25
    • /
    • 2016
  • Using a actuator to which the motor and the gear is applied to the I-PD control method and a dual-loop system to carry out precise position control. I-PD control algorithm performs an operation to reduce the overshoot in the transient response. Accordingly, the actuator obtains a precise position tracking result. Also it utilizes two sensors and dual loops. It reduces the adverse effect on the precise position control that may occur by the end play of the gear train. In this paper, we uses the actuator model applying the BLDC motor and gear in order to determine the position tracking result by the dynamic characteristic change. It was verified by the simulation results.

Realization of Visual Servoing Loop for Position Control of a Nano Manipulator (나노조작기의 수평측 위치제어를 위한 Visual Servoing Loop 구성)

  • Choi, Jin-Ho;Park, Byong-Chon;Ahn, Sang-Jung;Kim, Dal-Hyun;Lyou, Joon
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.251-252
    • /
    • 2007
  • Nano manipulator is used to manufacture Carbon NanoTube(CNT) tips. Using nano manipulator operator attaches a CNT at the end of Atomic Force Microscopy(AFM) tip, which requires a master mechanic and long manufacture time. Nano manipulator is installed inside Scanning Electron Microscopy (SEM) chamber to observe the operation. This paper presents a control of horizontal axis of nano manipulator via processing SEM image. Edges of AFM tip and CNT are first detected, the position information so obtained is fed to control horizontal axis of nano manipulator. To be specific, visual servoing loop was realized to control the axis more precisely.

  • PDF

Study on the I-PD Position Controller Design for Step Motor Drives

  • Yoshida, Ryo;Hirata, Yoshinori;Ochiai, Yasuzumi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.536-539
    • /
    • 2004
  • In this paper, a brief discussion on I-PD position controller design for step motor drive is presented. The proposed method mainly focuses on the robustness property of the controller, which is very important for this type of system in which the variation of external load affects plant parameters. It is considered in this paper that two types of controller design methods namely; Coefficient Diagram Method (CDM), and arbitrary Pole Assignment Method (PAM) are treated and compared them. The control plant chosen for our study is a SM inherently is comprised of some non-linear elements. A the scope of the design method is limited to only linear time invariant systems, the SM modeling is approximated to linear system.

  • PDF

A Study of the Dynamic Performance Improvement of a Linear Compressor Stroke Controller with a Current Control Loop (전류제어 루프를 갖는 선형 압축기 스트로크 제어기의 동적 성능 향상에 관한 연구)

  • Oh, Joon-Tae;Kim, Gyu-Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.274-282
    • /
    • 2013
  • In this paper, a linear motor stroke controller using a phase lag filter and a single phase PWM inverter with a current controller has been implemented. In order to control the cooling capability of a refrigerator or an air conditioner in which linear compressors are applied, the piston speed should be controlled. The piston speed control can be obtained by adjusting the frequency or the stroke of linear motors. Generally, the frequency is fixed, for example, as 60Hz and the stroke is adjusted. The dynamic performance of linear compressors depends on how accurately the stroke or the piston position is controlled by the current applied. A linear motor piston position controller with a current control loop is proposed and verified via some simulation studies.

Designing the high performance electro-hydraulic position controller using 3-port servo valve for heavy and unidirectional load system (대부하 편하중 유압시스템의 3-port 서어보 밸브를 사용한 고속제어기 설계 연구)

  • 김영대;이관섭;정인수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.276-281
    • /
    • 1989
  • Comparison 3-port servo system with 4-port is made to obtain optimal design for heavy and unidirectional hydraulic system, It is concluded that 3-port servo system it more adequate than 4-port for the heavy load system which is usually operated at lower frequencies. High performance electro-hydraulic position controller is designed using 3-port servo valve. It includes dynamic pressure feedback as a inner loop and position feedback as a outer loop.

  • PDF