• Title/Summary/Keyword: position and orientation

Search Result 739, Processing Time 0.027 seconds

Active Calibration of the Robot/camera Pose using Cylindrical Objects (원형 물체를 이용한 로봇/카메라 자세의 능동보정)

  • 한만용;김병화;김국헌;이장명
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.314-323
    • /
    • 1999
  • This paper introduces a methodology of active calibration of a camera pose (orientation and position) using the images of cylindrical objects that are going to be manipulated. This active calibration method is different from the passive calibration where a specific pattern needs to be located at a certain position. In the active calibration, a camera attached on the robot captures images of objects that are going to be manipulated. That is, the prespecified position and orientation data of the cylindrical object are transformed into the camera pose through the two consecutive image frames. An ellipse can be extracted from each image frame, which is defined as a circular-feature matrix. Therefore, two circular-feature matrices and motion parameters between the two ellipses are enough for the active calibration process. This active calibration scheme is very effective for the precise control of a mobile/task robot that needs to be calibrated dynamically. To verify the effectiveness of active calibration, fundamental experiments are peformed.

  • PDF

Steering Control Algorithm of an Up and Down Motion Robot Using a Quaternion with Spherical Cubic Interpolation (쿼터니언의 Spherical Cubic Interpolation 을 이용한 상하이송 로봇의 조향 방법에 관한 연구)

  • Chung W.J.;Kim K.J.;Kim S.H.;Kim H.G.;Seo Y.K.;Lee K.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1832-1835
    • /
    • 2005
  • This paper presents the steering control algorithm of an up and down motion robot using a quaternion. The up and down motion robot is to be moved on an irregular floor that can inevitably result in the errors of both position and orientation. Especially the orientation error should be compensated every work in order to adjust the misaligned values of current orientation to those commanded values. In this paper, we propose a new steering control algorithm between the two values by using a quaternion with spherical cubic interpolation. The proposed algorithm is shown to be effective in terms of vibration when compared to a conventional simple compensation without interpolation, by using $MATLAB^{(R)}$ and $VisualNastran4D^{(R)}$

  • PDF

The Position/Orientation Determination of a Mobile-Task Robot Using an Active Calibration Scheme

  • Jin, Tae-Seok;Lee, Jang-Myung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1431-1442
    • /
    • 2003
  • A new method of estimating the pose of a mobile-task robot is developed based upon an active calibration scheme. The utility of a mobile-task robot is widely recognized, which is formed by the serial connection of a mobile robot and a task robot. To be an efficient and precise mobile-task robot, the control uncertainties in the mobile robot should be resolved. Unless the mobile robot provides an accurate and stable base, the task robot cannot perform various tasks. For the control of the mobile robot, an absolute position sensor is necessary. However, on account of rolling and slippage of wheels on the ground, there does not exist any reliable position sensor for the mobile robot. This paper proposes an active calibration scheme to estimate the pose of a mobile robot that carries a task robot on the top. The active calibration scheme is to estimate a pose of the mobile robot using the relative position/orientation to a known object whose location, size, and shape are known a priori. For this calibration, a camera is attached on the top of the task robot to capture the images of the objects. These images are used to estimate the pose of the camera itself with respect to the known objects. Through the homogeneous transformation, the absolute position/orientation of the camera is calculated and propagated to get the pose of a mobile robot. Two types of objects are used here as samples of work-pieces: a polygonal and a cylindrical object. With these two samples, the proposed active calibration scheme is verified experimentally.

An Efficient Localization Algorithm for Mobile Robots in RFID Sensor Space (모바일 로봇을 위한 RFID 센서공간에서 효율적인 위치인식 알고리즘)

  • Lim, Hyung-Soo;Choi, Sung-Yug;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.949-955
    • /
    • 2007
  • This paper proposes an efficient localization algorithm in the RFID sensor space for the precise localization of a mobile robot. The RFID sensor space consists of embedded sensors and a mobile robot. The embedded sensors, that is tags are holding the absolute position data and provide them to the robot which carries a reader and requests the absolute position fur localization. The reader, it is called as antenna usually, gets several tag data at the same time within its readable range. It takes time to read all the tags and to process the data to estimate the position, which is a major factor to deteriorate the localization accuracy. In this paper, an efficient algorithm to estimate the position and orientation of the mobile robot as quickly as possible has been proposed. Along with the algorithm, a new allocation of the tags in the RFID sensor space is also proposed to improve the localization accuracy. The proposed algorithms are demonstrated and verified through the real experiments.

Pose Determination of a Mobile-Task Robot Using an Active Calibration of the Landmark

  • Jin, Tae-Seok;Park, Jin-Woo;Lee, Jand-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.734-739
    • /
    • 2003
  • A new method of estimating the pose of a mobile-task robot is developed based upon an active calibration scheme. The utility of a mobile-task robot is widely recognized, which is formed by the serial connection of a mobile robot and a task robot. For the control of the mobile robot, an absolute position sensor is necessary. This paper proposes an active calibration scheme to estimate the pose of a mobile robot that carries a task robot on the top. The active calibration scheme is to estimate a pose of the mobile robot using the relative position/orientation to a known object whose location, size, and shape are known a priori. Through the homogeneous transformation, the absolute position/orientation of the camera is calculated and that is propagated to getting the pose of a mobile robot. With the experiments in the corridor, the proposed active calibration scheme is verified experimentally.

  • PDF

Position Estimation of Wheeled Mobile Robot in a Corridor Using Neural Network (신경망을 이용한 복도에서의 구륜이동로봇의 위치추정)

  • Choi, Kyung-Jin;Lee, Young-Hyun;Park, Chong-Kug
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.577-582
    • /
    • 2004
  • This paper describes position estimation algorithm using neural network for the navigation of the vision-based Wheeled Mobile Robot (WMR) in a corridor with taking ceiling lamps as landmark. From images of a corridor the lamp's line on the ceiling in corridor has a specific slope to the lateral position of the WMR. The vanishing point produced by the lamp's line also has a specific position to the orientation of WMR. The ceiling lamps has a limited size and shape like a circle in image. Simple image processing algorithms are used to extract lamps from the corridor image. Then the lamp's line and vanishing point's position are defined and calculated at known position of WMR in a corridor To estimate the lateral position and orientation of WMR from an image, the relationship between the position of WMR and the features of ceiling lamps have to be defined. Data set between position of WMR and features of lamps are configured. Neural network are composed and teamed with data set. Back propagation algorithm(BPN) is used for learning. And it is applied in navigation of WMR in a corridor.

Behavior of Weld Pool Shape and Weld Surface Deformation as a Function of Spot-GTA Welding Position for 304 Stainless Steel (Spot-GTA 용접자세에 따른 304 스테인리스강 용융지 표면 및 용접부 형상 거동)

  • Kang, Nam-Hyun;Park, Yeong-Do;Cho, Kyung-Mox;Singh, Jogender;Kulkarni, Anil
    • Journal of Welding and Joining
    • /
    • v.26 no.2
    • /
    • pp.62-68
    • /
    • 2008
  • Effects of gravitational orientation on gas tungsten arc welding (GTAW) for 304 stainless steel were studied to determine the critical factors for weld pool formation, such as weld surface deformation and weld pool shape. This study was accomplished through an analytical study of weld pool stability as a function of primary welding parameters (arc current and arc holding time), material properties (surface tension and density), and melting efficiency (cross-sectional area). The stability of weld pool shape and weld surface deformation was confirmed experimentally by changing the welding position. The arc current and translational velocity were the major factors in determining the weld pool stability as a function of the gravitational orientation. A 200A spot GTAW showed a significant variation of the weld pool formation as the arc held longer than 3 seconds, however the weld pool shape and surface morphology for a 165A spot GTAW were 'stable', i.e., constant regardless of the gravitational orientation. The cross-sectional area of the weld (CSA) was one of the critical factors in determining the weld pool stability. The measured CSA ($13.5mm^2$) for the 200A spot GTAW showed a good agreement with the calculated CSA ($14.9mm^2$).

Accurate Pose Measurement of Label-attached Small Objects Using a 3D Vision Technique (3차원 비전 기술을 이용한 라벨부착 소형 물체의 정밀 자세 측정)

  • Kim, Eung-su;Kim, Kye-Kyung;Wijenayake, Udaya;Park, Soon-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.839-846
    • /
    • 2016
  • Bin picking is a task of picking a small object from a bin. For accurate bin picking, the 3D pose information, position, and orientation of a small object is required because the object is mixed with other objects of the same type in the bin. Using this 3D pose information, a robotic gripper can pick an object using exact distance and orientation measurements. In this paper, we propose a 3D vision technique for accurate measurement of 3D position and orientation of small objects, on which a paper label is stuck to the surface. We use a maximally stable extremal regions (MSERs) algorithm to detect the label areas in a left bin image acquired from a stereo camera. In each label area, image features are detected and their correlation with a right image is determined by a stereo vision technique. Then, the 3D position and orientation of the objects are measured accurately using a transformation from the camera coordinate system to the new label coordinate system. For stable measurement during a bin picking task, the pose information is filtered by averaging at fixed time intervals. Our experimental results indicate that the proposed technique yields pose accuracy between 0.4~0.5mm in positional measurements and $0.2-0.6^{\circ}$ in angle measurements.

The Effect of Flight Attendant's Ego State on Job Satisfaction and Customer Orientation -Focused on Transactional Analysis- (항공사 객실 승무원의 자아상태가 직무만족과 고객지향성에 미치는 영향 - 교류분석을 중심으로 -)

  • Moon, Jiwon;Yeon, Jiyoung;Choi, Jeongil
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.1
    • /
    • pp.135-152
    • /
    • 2018
  • Purpose: This study attempted to analyze how the ego state of flight attendants affects their job satisfaction and customer orientation using Berne's (1966) transactional analysis and further compare the difference between job satisfaction and customer orientation depending on demographic characteristics, position, and ego state. Methods: The data was collected by using the structured questionnaires to flight attendant of major airline companies. The proposed research model is tested using 164 valid questionnaires using SPSS 23 and Smart PLS 2. Results: This research indicated the only free child ego sate among ego state factors of flight attendant was found to have a positive impact on job satisfaction. In the relationship between ego states and customer orientation, all ego state factors were found to have a significant influence on customer orientation. Conclusions: The study offered a theoretical and empirical foundation for future research by empirically identifying the relationship between ego state factors and customer orientation in the in-flight service and suggested the strategic implications to increase job satisfaction and customer orientation based on the psychology and ego state of flight attendant.

Measurement of the position and pose of arbitrarily placed polyhedrons (임의로 놓여진 다면체의 위치와 자세측정에 관한 연구)

  • 이상용;한민홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.613-617
    • /
    • 1990
  • This paper presents a method of calculating the position and orientation of a polyhedron arbitrarily placed in 3-D space using two cameras. We use key feature of the object and CAD data to solve the correspondence problem between two cameras' images.

  • PDF