• Title/Summary/Keyword: position and orientation

Search Result 739, Processing Time 0.026 seconds

Core Point Detection Using Labeling Method in Fingerprint (레이블링 방법을 이용한 지문 영상의 기준점 검출)

  • 송영철;박철현;박길흠
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9C
    • /
    • pp.860-867
    • /
    • 2003
  • In this paper, an efficient core point detection method using orientation pattern labeling is proposed in fingerprint image. The core point, which is one of the singular points in fingerprint image, is used as the reference point in the most fingerprint recognizing system. Therefore, the detection of the core point is the most essential step of the fingerprint recognizing system, it can affect in the whole system performance. The proposed method could detect the position of the core point by applying the labeling method for the directional pattern which is come from the distribution of the ridges in fingerprint image and applying detailed algorithms for the decision of the core point's position. The simulation result of proposed method is better than the result of Poincare index method and the sine map method in executing time and detecting rate. Especially, the Poincare index method can't detect the core point in the detection of the arch type and the sine map method takes too much times for executing. But the proposed method can overcome these problems.

Study of Local Performance Index of 2-DOF Parallel Manipulator (2 자유도 병렬형 매니퓰레이터의 지역 성능지수에 관한 연구)

  • Lee, Jong Gyu;Yang, Seung Han;Lee, Sang Ryong;Lee, Choon Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.89-95
    • /
    • 2013
  • This study investigates a parallel manipulator that can move over two parallel sliders and in which the end-effector of the manipulator can be adjusted arbitrarily. Through the direct and inverse kinematics of the manipulator, position equations are derived. These equations represent the relationship between the positions of the sliders and the position of the end-effector. The Jacobian matrices of the direct and inverse kinematics are obtained by these equations. By using the condition number defined from these matrices, the local performance index of the manipulator is proposed. By using the simulation results of the performance index, we find that the manipulator can smoothen movements in only one quadrant and that the distribution of the maximal performance index is affected by the ratio of the length of links and the orientation of the end-effector.

Analysis and Implications on Recent Research Articles' Trends in Korean Academy Literature (한국장애인복지학 연구동향에 관한 분석과 고찰: 장애인복지학의 이론적 패러다임을 중심으로)

  • Kim, Kyung-Mee;Kim, Mi-Ok
    • Korean Journal of Social Welfare
    • /
    • v.58 no.3
    • /
    • pp.269-294
    • /
    • 2006
  • This paper aimed to analyze articles published in 9 Korean social work journals from 1979 to 2005 regarding the conceptualization of disability and the orientation of disability theories. Trends of disability theories have shifted from the division of the individual model and the social model to four models including individual materialist, individual idealist, social creationist, and social constructionist. As a result of categorizing the articles, it was revealed that the individual idealist position is the most popular and the social creationist position is increasingly popular. To understand disability holistically, the complexity of disability has to be addressed rather than focusing on one model.

  • PDF

Simple Robust Digital Position Control Algorithm of BLDD Motor using Neural Network with State Feedback (상태궤환과 신경망을 이용한 BLDD Motor의 간단한 강인 위치 제어 알고리즘)

  • 고종선;안태천
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.214-221
    • /
    • 1998
  • A new control approach using neural network for the robust position control of a BRUSHLESS direct drive(BLDD) motor is presented. The linear quadratic controller plus feedforward neural network is employed to obtain the robust BLDD motor system approximately linearized using field-orientation method for an AC servo. The neural network is trained in on-line phases and this neural network is composed by a feedforward recall and error back-propagation training. Since the total number of nodes are only eight, this system will be easily realized by the general microprocessor. During the normal operation, the input-output response is sampled and the weighting value is trained by error back-propagation at each sample period to accommodate the possible variations in the parameters or load torque. And the state space analysis is performed to obtain the state feedback gains systematically. In addition, the robustness is also obtained without affecting overall system response.

  • PDF

Hybrid Inertial and Vision-Based Tracking for VR applications (가상 현실 어플리케이션을 위한 관성과 시각기반 하이브리드 트래킹)

  • Gu, Jae-Pil;An, Sang-Cheol;Kim, Hyeong-Gon;Kim, Ik-Jae;Gu, Yeol-Hoe
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.103-106
    • /
    • 2003
  • In this paper, we present a hybrid inertial and vision-based tracking system for VR applications. One of the most important aspects of VR (Virtual Reality) is providing a correspondence between the physical and virtual world. As a result, accurate and real-time tracking of an object's position and orientation is a prerequisite for many applications in the Virtual Environments. Pure vision-based tracking has low jitter and high accuracy but cannot guarantee real-time pose recovery under all circumstances. Pure inertial tracking has high update rates and full 6DOF recovery but lacks long-term stability due to sensor noise. In order to overcome the individual drawbacks and to build better tracking system, we introduce the fusion of vision-based and inertial tracking. Sensor fusion makes the proposal tracking system robust, fast, accurate, and low jitter and noise. Hybrid tracking is implemented with Kalman Filter that operates in a predictor-corrector manner. Combining bluetooth serial communication module gives the system a full mobility and makes the system affordable, lightweight energy-efficient. and practical. Full 6DOF recovery and the full mobility of proposal system enable the user to interact with mobile device like PDA and provide the user with natural interface.

  • PDF

A New Device and Procedure for Kinematic Calibration of Parallel Manipulators

  • Rauf, Abdul;Kim, Sung-Gaun;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1615-1620
    • /
    • 2003
  • Kinematic calibration is a process whereby the actual values of geometric parameters are estimated so as to minimize the error in absolute positioning. Measuring all components of Cartesian posture, particularly the orientation, can be difficult. With partial pose measurements, all parameters may not be identifiable. This paper proposes a new device that can identify all kinematic parameters with partial pose measurements. Study is performed for a six degree-of-freedom fully parallel Hexa Slide manipulator. The device, however, is general and can be used for other parallel manipulators. The proposed device consists of a link with U joints on both sides and is equipped with a rotary sensor and a biaxial inclinometer. When attached between the base and the mobile platform, the device restricts the end-effector's motion to five degree-of-freedom and can measure position of the end-effector and one of its rotations. Numerical analyses of the identification Jacobian reveal that all parameters are identifiable. Computer simulations show that the identification is robust for the errors in the initial guess and the measurement noise. Intrinsic inaccuracies of the device can significantly deteriorate the calibration results. A measurement procedure is proposed and formulations of cost functions are discussed to prevent propagation of the inaccuracies to the calibration results.

  • PDF

Experimental study of the loads induced by a large-scale tornado simulation on a HAWT model

  • Lopez, Juan P.;Hangan, Horia;El Damatty, Ashraf
    • Wind and Structures
    • /
    • v.33 no.6
    • /
    • pp.437-446
    • /
    • 2021
  • As wind turbine rotors increase, the overall loads and dynamic response become an important issue. This problem is augmented by the exposure of wind turbines to severe atmospheric events with unconventional flows such as tornadoes, which need specific designs not included in standards and codes at present. An experimental study was conducted to analyze the loads induced by a tornado-like vortex (TLV) on horizontal-axis wind turbines (HAWT). A large-scale tornado simulation developed in The Wind Engineering, Energy and Environment (WindEEE) Dome at Western University in Canada, the so-called Mode B Tornado, was employed as the TLV flow acting on a rigid wind turbine model under two rotor operational conditions (idling and parked) for five radial distances. It was observed that the overall forces and moments depend on the location and orientation of the wind turbine system with respect to the tornado vortex centre, as TLV are three-dimensional flows with velocity gradients in the radial, vertical, and tangential direction. The mean bending moment at the tower base was the most important in terms of magnitude and variation in relation to the position of the HAWT with respect to the core radius of the tornado, and it was highly dependent on the rotor Tip Speed Ratio (TSR).

Experimental study of the loads induced by a large-scale tornado simulation on a HAWT model

  • Lopez, Juan P.;Hangan, Horia;El Damatty, Ashraf
    • Wind and Structures
    • /
    • v.34 no.3
    • /
    • pp.303-312
    • /
    • 2022
  • As wind turbine rotors increase, the overall loads and dynamic response become an important issue. This problem is augmented by the exposure of wind turbines to severe atmospheric events with unconventional flows such as tornadoes, which need specific designs not included in standards and codes at present. An experimental study was conducted to analyze the loads induced by a tornado-like vortex (TLV) on horizontal-axis wind turbines (HAWT). A large-scale tornado simulation developed in The Wind Engineering, Energy and Environment (WindEEE) Dome at Western University in Canada, the so-called Mode B Tornado, was employed as the TLV flow acting on a rigid wind turbine model under two rotor operational conditions (idling and parked) for five radial distances. It was observed that the overall forces and moments depend on the location and orientation of the wind turbine system with respect to the tornado vortex centre, as TLV are three-dimensional flows with velocity gradients in the radial, vertical, and tangential direction. The mean bending moment at the tower base was the most important in terms of magnitude and variation in relation to the position of the HAWT with respect to the core radius of the tornado, and it was highly dependent on the rotor Tip Speed Ratio (TSR).

Removal of Debris Blocking an Entryway: Inverse Kinematic Control and Balancing Controller Design for Humanoid (휴머노이드 로봇의 입구 통로를 막고 있는 잔해 제거를 위한 역 기구학 제어와 자세 제어기 설계)

  • Lee, In-Ho;Kim, Inhyeok;Oh, Jun-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1063-1066
    • /
    • 2014
  • The humanoid robot, DRC-HUBO is developed from the KHR (KAIST Humanoid Robot) series to meet the requirements of the DARPA Robotics Challenge. DARPA Robotics Challenge was a competition to develop semi-autonomous humanoid robot so that dispatched in dangerous environments in place of humans like the Fukushima nuclear accident. In this paper, we introduce DRCH-UBO briefly and a methodology to remove debris blocking an entryway. The methodology includes inverse kinematics for DRC-HUBO and stabilization controller based on ZMP. Proposed inverse kinematics is robust, and pelvis-related tasks improve the manipulability and workspace of the arms. The controller improves the damping characteristic of the system and mitigates the instability during removal of debris. For given position and orientation of the debris, DRC-HUBO generates motion to reach the debris and lift up while stabilizing itself. Many experimental results verify our proposed methodology.

Changes in the Earth's Spin Rotation due to the Atmospheric Effects and Reduction in Glaciers

  • Na, Sung-Ho;Cho, Jungho;Kim, Tu-Hwan;Seo, Kiweon;Youm, Kookhyoun;Yoo, Sung-Moon;Choi, Byungkyu;Yoon, Hasu
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.295-304
    • /
    • 2016
  • The atmosphere strongly affects the Earth's spin rotation in wide range of timescale from daily to annual. Its dominant role in the seasonal perturbations of both the pole position and spinning rate of the Earth is once again confirmed by a comparison of two recent data sets; i) the Earth orientation parameter and ii) the global atmospheric state. The atmospheric semi-diurnal tide has been known to be a source of the Earth's spin acceleration, and its magnitude is re-estimated by using an enhanced formulation and an up-dated empirical atmospheric S2 tide model. During the last twenty years, an unusual eastward drift of the Earth's pole has been observed. The change in the Earth's inertia tensor due to glacier mass redistribution is directly assessed, and the recent eastward movement of the pole is ascribed to this change. Furthermore, the associated changes in the length of day and UT1 are estimated.