• Title/Summary/Keyword: position and orientation

Search Result 739, Processing Time 0.03 seconds

Planning of Compliant Motions for Fixture Loading

  • Yu, Kyeonah
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.62-68
    • /
    • 2000
  • Fixtures are used in almost all phases of machining and assembly to position and hold a part accurately. The class of fixture which consists of 3 locators and 1 clamp(3L/1C) is known as the minimal set that can provide form closure which is a kinematic constraint condition for preventing all planar motions. This type of fixtures has advantages in terms of the number of fixture elements required, the time for clamping, and so on. However it is not widely used in industry because reliable loading scheme has not been reported. In this paper, we propose a method to load the class of 3L/1C fixtures using compliant motions. The planner is developed for synthesizing compliant motions to achieve precise final fixture configuration in the presence of sensing and control uncertainties. A novel approach to eliminate uncertainty in part orientation by adding one extra fixture element called an aligning pin is proposed.

  • PDF

Compensation of SDINS Navigation Errors Using Line-Of-Sight Vector (시선벡터를 이용한 관성항법장치의 보정기법)

  • Lim, You-Chol;Yim, Jong-Bin;Lyou, Joon
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2521-2524
    • /
    • 2003
  • Since inertial sensor errors which increase with time are caused by initial orientation error and sensor errors (accelerometer bias and gyro drift bias), the accuracy of these devices, while still improving, is not adequate for many of today's high-precision, long-duration sea, aircraft, and long-range missile missions. This paper presents a navigation error compensation scheme for Strap-Down Inertial Navigation System (SDINS) using Line-Of-Sight(LOS) vector from star sensor. To be specific, SDINS error model and measurement equation are derived, and Kalman filter is implemented. Simulation results show the bounded-ness of position and attitude errors.

  • PDF

The estimation of camera's position and orientation using Hough Transform and Vanishing Point in the road Image (도로영상에서 허프변환과 무한원점을 이용한 카메라 위치 및 자세 추정 알고리즘)

  • Chae, Jung-Soo;Choi, Seong-Gu;Rho, Do-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.511-513
    • /
    • 2004
  • Camera Calibration should certain)y be achieved to take an accurate measurement using image system. Calibration is to prove the relation between an measurement object and camera and to estimate twelve internal and external parameters. In this paper, we suggest that an algorithm should estimate the external parameters from the road image and use a vanishing point's character from parallel straight lines in a space. also, we use Hough Transform to estimate an accurate vanishing point. Hough Transform has one of the advantages which is an application for each road environment. we assume a variety of environments to prove the usability of a suggested algorithm and show simulation results with a computer.

  • PDF

Development of Rotational Motion Estimation System for a UUV/USV based on TMS320F28335 microprocessor

  • Tran, Ngoc-Huy;Choi, Hyeung-Sik;Kim, Joon-Young;Lee, Min-Ho
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.4
    • /
    • pp.223-232
    • /
    • 2012
  • For the accurate estimation of the position and orientation of a UUV (unmanned underwater vehicle), a low-cost AHRS (attitude heading reference system) was developed using a low-cost IMU (inertial measurement unit) sensor which provides information on the 3D acceleration, 3D turning rate and 3D earth-magnetic field data in the object coordinate system. The main hardware system is composed of an IMU sensor (ADIS16405) and TMS320F28335, which is coded with an extended kalman filter algorithm with a 50-Hz sampling frequency. Through an experimental gimbal device, good estimation performance for the pitch, roll, and yaw angles of the developed AHRS was verified by comparing to those of a commercial AHRS called the MTi system. The experimental results are here presented and analyzed.

Study on Development of Parallel-Typed Tilting Table and RAD Tool Program (병렬기구형 틸팅 테이블 및 RAD Tool 프로그램 개발에 관한 연구)

  • 김태성;박성민;원동희;이민기;박근우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.284-289
    • /
    • 2002
  • In this paper, we develop a six-axes machining center tool(MCT) and CAD/CAM system based RAD Tool Program. The MCT consists of two mechanical parts, i.e., a X-Y-Z Cartesian coordinate typed MCT and a parallel-typed tilting table. Kinematics and singularity are accomplished to design the parallel-typed tilting table, and RAD Tool Program Is developed for the six-axes MCT, which requires the commands of position as well as orientation for machining of complex shape. In RAD Tool, the CAD/CAM system has a tool path generator, NC code generator and a graphic simulator. This paper designs the parallel-typed tilting table to meet the desired specification and presents the results of CAD/CAM system based RAD Tool Program.

  • PDF

Improved Statistical Grey-Level Models for PCB Inspection (PCB 검사를 위한 개선된 통계적 그레이레벨 모델)

  • Bok, Jin Seop;Cho, Tai-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Grey-level statistical models have been widely used in many applications for object location and identification. However, conventional models yield some problems in model refinement when training images are not properly aligned, and have difficulties for real-time recognition of arbitrarily rotated models. This paper presents improved grey-level statistical models that align training images using image or feature matching to overcome problems in model refinement of conventional models, and that enable real-time recognition of arbitrarily rotated objects using efficient hierarchical search methods. Edges or features extracted from a mean training image are used for accurate alignment of models in the search image. On the aligned position and orientation, fitness measure based on grey-level statistical models is computed for object recognition. It is demonstrated in various experiments in PCB inspection that proposed methods are superior to conventional methods in recognition accuracy and speed.

A SDINS Error Compensation Scheme Using Star Tracker

  • Yim, Jong-Bin;Lyou, Joon;Lim, You-Chol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.888-893
    • /
    • 2005
  • Since inertial sensor errors which increase with time are caused by initial orientation error and sensor errors(accelerometer bias and gyro drift bias), the accuracy of these devices, while still improving, is not adequate for many of today's high-precision, long-duration sea, aircraft, and long-range flight missions. This paper presents a navigation error compensation scheme for Strap-Down Inertial Navigation System(SDINS) using star tracker. To be specific, SDINS error model and measurement equation are derived, and Kalman filter is implemented. Simulation results show the boundedness of position and attitude errors.

  • PDF

An Accurate Edge-Based Matching Using Subpixel Edges (서브픽셀 에지를 이용한 정밀한 에지기반 정합)

  • Cho, Tai-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.493-498
    • /
    • 2007
  • In this paper, a 2-dimensional accurate edge-based matching algorithm using subpixel edges is proposed that combines the Generalized Hough Transform(GHT) and the Chamfer matching to complement the weakness of either method. First, the GHT is used to find the approximate object positions and orientations, and then these positions and orientations are used as starting parameter values to find more accurate position and orientation using the Chamfer matching with distance interpolation. Finally, matching accuracy is further refined by using a subpixel algorithm. Testing results demonstrate that greater matching accuracy is achieved using subpixel edges rather than edge pixels.

Edge-Based Matching Using Generalized Hough Transform and Chamfer Matching (Generalized Hough Transform과 Chamfer 정합을 이용한 에지기반 정합)

  • Cho, Tai-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.1
    • /
    • pp.94-99
    • /
    • 2007
  • In this paper, a 2-dimensional edge-based matching algorithm is proposed that combines the generalized Hough transform (GHT) and the Chamfer matching to complement weakness of either method. First, the GHT is used to find approximate object positions and orientations, and then these positions and orientations are used as starling parameter values to find more accurate position and orientation using the Chamfer matching. Finally, matching accuracy is further refined by using a subpixel algorithm. The algorithm was implemented and successfully tested on a number of images containing various electronic components.

Study on Development of Parallel-Typed Tilting Table (병렬기구형 틸팅 테이블의 개발에 관한 연구)

  • Lee, Won-Chul;Kim, Tae-Sung;Park, Kun-Woo;Lee, Min-Ki
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.734-739
    • /
    • 2001
  • In this paper, we develop a six-axes machining center tool(MCT) and CAD/CAM system. The MCT consists of two mechanical parts, i.e., a X-Y-Z Cartesian coordinate typed MCT and a parallel-typed tilting table. Kinematics and singularity are accomplished to design the parallel-typed tilting table, and CAD/CAM system is developed for the six-axes MCT, which requires the commands of position as well as orientation for machining of complex shape. The CAD/CAM system has a tool path generator, a NC code generator and a graphic simulator. This paper designs the parallel-typed tilting table to meet the desired specification and presents the results of tool path, NC code and graphic simulation.

  • PDF