• 제목/요약/키워드: portfolio approach

검색결과 124건 처리시간 0.02초

동태 글로벌 CGE 모형을 활용한 정책 포트폴리오의 Post-2012 경제적 파급효과 분석 (An Economic Impact Analysis of the Post-2012 Policy Portfolio, Utilizing the Global Dynamic CGE Model)

  • 김수이;조경엽;유승직
    • 자원ㆍ환경경제연구
    • /
    • 제18권4호
    • /
    • pp.587-635
    • /
    • 2009
  • 본 연구의 목적은 Post-2012 의무부담에 대한 경제적 파급효과 분석을 위해 글로벌 동태연산기능일반균형모형(Global Dynamic Computable General Equilibrium Model : Global CGE Model)을 개발하는 것이다. 즉, 본 모형을 통해 우리나라의 의무부담 증가에 따라서 국제 배출권거래시장과 GNP, 소비, 투자, 수 출입 등 거시경제 변수들에 미치는 영향을 살펴보고자 한다. 기존 연구와는 달리 본 모형은 전 세계를 주요 경제그룹으로 나누어 분석한 글로벌모형으로서 주요 국가의 거시경제지표를 모두 반영하고 있으며, 이론적으로는 내생적 경제성장이론을 적용하고, 정책적으로는 배출권거래제도와 탄소세 등을 반영하고 있다. 특히 외생적인 기술진보를 모형에 반영하였다. 본 분석에 의하면, 온실가스 감축이 강화될수록 경제에 미치는 악영향이 커진다는 것을 알 수 있으며 거시경제지표 중에 무역수지의 감소가 가장 크게 나타나고 그 다음으로 투자 소비의 감소율이 큰 것으로 나타났다. 특히 산업별로는 에너지 의존도가 큰 에너지 다소비 업종일수록 온실가스 감축 영향이 크게 나타난다. 그리고 현재 개발도상국의 지위를 부여받고 있는 한국이 온실가스 감축 의무부담을 받으면 상대적으로 중국 등 다른 개발도상국들은 이득을 본다.

  • PDF

Performance Analysis of Trading Strategy using Gradient Boosting Machine Learning and Genetic Algorithm

  • Jang, Phil-Sik
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권11호
    • /
    • pp.147-155
    • /
    • 2022
  • 본 연구에서는 그래디언트 부스팅 기계학습과 유전 알고리즘을 이용하여 일별 주식 포트폴리오를 동적으로 구성하는 시스템을 구축하고 트레이딩 시뮬레이션을 통해 성능을 분석하였다. 이를 위해 유가증권시장과 코스닥시장에 상장된 종목들의 가격 데이터 및 투자자별 거래정보를 포함한 다양한 데이터를 수집하고, 전처리 과정과 변수가공을 통해 학습-예측에 이용될 변수들을 생성하였다. 첫 번째 실험에서는 예측정확도와 정밀도, 재현율 및 F1 점수 등 네 가지 지표를 활용하여 그래디언트 부스팅 기법들(XGBoost, LightGBM, CatBoost)의 성능을 비교 평가하였다. 두 번째 실험에서는 전 단계에서 선택된 LightGBM과 유전 알고리즘을 적용하여 상장 종목들의 일별 수익 여부를 학습-예측하였다. 그리고 예측된 수익 발생확률을 바탕으로 종목을 선별하여 트레이딩 시뮬레이션을 시행하고, CAGR, MDD, 사프지수 및 변동성 측면에서 코스피, 코스닥 지수와의 성능을 비교 평가하였다. 분석 결과, 제안된 전략들 모두 네 가지 성능평가 지표상에서 시장 평균을 넘어서는 것으로 나타났으며, 그래디언트 부스팅과 유전 알고리즘의 결합이 주식 가격 예측에 효과적으로 이용될 수 있음을 보여주었다.

정보보호 대책의 효과성을 고려한 정보보호 투자 의사결정 지원 모형 (A Model for Supporting Information Security Investment Decision-Making Considering the Efficacy of Countermeasures)

  • 박병조;김태성
    • 경영정보학연구
    • /
    • 제25권4호
    • /
    • pp.27-45
    • /
    • 2023
  • 정보통신기술의 발달로 정보보호의 중요성이 커졌지만, 기업은 제한된 예산 내에서 적절한 대책을 선택하는 데 어려움을 겪고 있다. Sönmez and Kılıç(2021)는 정보 보안 침해를 완화하기 위한 최적의 투자 조합을 결정하기 위해 AHP 및 혼합 정수 계획을 사용하는 모델을 제안했다. 그러나 1) 보안 위협에 대한 보안 대책의 효과를 객관적으로 측정하지 못하고, 2) 투자로 인한 위험 감소가 투자 이전에 측정한 위험 수준을 초과하는 비현실적인 현상이 발생하고, 3) 여러 위협에 대해 단일 대응책을 사용할 때 중복된 투자가 이루어진다는 한계가 있었다. 본 연구에서는 베타 확률 분포를 사용하여 대책의 효과를 객관적으로 정량화하고, 위험 감소 수준이 투자 이전에 측정된 위험 수준을 초과하지 않고 보안 대책이 중복 투자되지 않도록 최적화 모델을 개선했다. 개선된 모델을 국내 중소기업을 대상으로 실증분석한 결과, Sönmez and Kılıç(2021)의 최적화 모델보다 더 나은 결과를 도출했다. 개선된 최적화 모델을 사용하면 정보보호 비용, 수량, 대책 효율성을 고려하여 고정된 예산 내에서 최적의 대책별 투자 포트폴리오를 도출할 수 있고, 정보 보안 예산을 확보하고 정보 보안 위협을 효과적으로 해결하는데 도움이 될 것이다.

Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석 (Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression)

  • 김선웅;최흥식
    • 지능정보연구
    • /
    • 제23권2호
    • /
    • pp.107-122
    • /
    • 2017
  • 주식시장의 주가 수익률에 나타나는 변동성은 투자 위험의 척도로서 재무관리의 이론적 모형에서뿐만 아니라 포트폴리오 최적화, 증권의 가격 평가 및 위험관리 등 투자 실무 영역에서도 매우 중요한 역할을 하고 있다. 변동성은 주가 수익률이 평균을 중심으로 얼마나 큰 폭의 움직임을 보이는가를 판단하는 지표로서 보통 수익률의 표준편차로 측정한다. 관찰 가능한 표준편차는 과거의 주가 움직임에서 측정되는 역사적 변동성(historical volatility)이다. 역사적 변동성이 미래의 주가 수익률의 변동성을 예측하려면 변동성이 시간 불변적(time-invariant)이어야 한다. 그러나 대부분의 변동성 연구들은 변동성이 시간 가변적(time-variant)임을 보여주고 있다. 이에 따라 시간 가변적 변동성을 예측하기 위한 여러 계량 모형들이 제안되었다. Engle(1982)은 변동성의 시간 가변적 특성을 잘 반영하는 변동성 모형인 Autoregressive Conditional Heteroscedasticity(ARCH)를 제안하였으며, Bollerslev(1986) 등은 일반화된 ARCH(GARCH) 모형으로 발전시켰다. GARCH 모형의 실증 분석 연구들은 실제 증권 수익률에 나타나는 두터운 꼬리 분포 특성과 변동성의 군집현상(clustering)을 잘 설명하고 있다. 일반적으로 GARCH 모형의 모수는 가우스분포로부터 추출된 자료에서 최적의 성과를 보이는 로그우도함수에 대한 최우도추정법에 의하여 추정되고 있다. 그러나 1987년 소위 블랙먼데이 이후 주식 시장은 점점 더 복잡해지고 시장 변수들이 많은 잡음(noise)을 띠게 됨에 따라 변수의 분포에 대한 엄격한 가정을 요구하는 최우도추정법의 대안으로 인공지능모형에 대한 관심이 커지고 있다. 본 연구에서는 주식 시장의 주가 수익률에 나타나는 변동성의 예측 모형인 GARCH 모형의 모수추정방법으로 지능형 시스템인 Support Vector Regression 방법을 제안한다. SVR은 Vapnik에 의해 제안된 Support Vector Machines와 같은 원리를 회귀분석으로 확장한 모형으로서 Vapnik의 e-insensitive loss function을 이용하여 비선형 회귀식의 추정이 가능해졌다. SVM을 이용한 회귀식 SVR은 두터운 꼬리 분포를 보이는 주식시장의 변동성과 같은 관찰치에서도 우수한 추정 성능을 보인다. 2차 손실함수를 사용하는 기존의 최소자승법은 부최적해로서 추정 오차가 확대될 수 있다. Vapnik의 손실함수에서는 입실론 범위내의 예측 오차는 무시하고 큰 예측 오차만 손실로 처리하기 때문에 구조적 위험의 최소화를 추구하게 된다. 금융 시계열 자료를 분석한 많은 연구들은 SVR의 우수성을 보여주고 있다. 본 연구에서는 주가 변동성의 분석 대상으로서 KOSPI 200 주가지수를 사용한다. KOSPI 200 주가지수는 한국거래소에 상장된 우량주 중 거래가 활발하고 업종을 대표하는 200 종목으로 구성된 업종 대표주들의 포트폴리오이다. 분석 기간은 2010년부터 2015년까지의 6년 동안이며, 거래일의 일별 주가지수 종가 자료를 사용하였고 수익률 계산은 주가지수의 로그 차분값으로 정의하였다. KOSPI 200 주가지수의 일별 수익률 자료의 실증분석을 통해 기존의 Maximum Likelihood Estimation 방법과 본 논문이 제안하는 지능형 변동성 예측 모형의 예측성과를 비교하였다. 주가지수 수익률의 일별 자료 중 학습구간에서 대칭 GARCH 모형과 E-GARCH, GJR-GARCH와 같은 비대칭 GARCH 모형에 대하여 모수를 추정하고, 검증 구간 데이터에서 변동성 예측의 성과를 비교하였다. 전체 분석기간 1,487일 중 학습 기간은 1,187일, 검증 기간은 300일 이다. MLE 추정 방법의 실증분석 결과는 기존의 많은 연구들과 비슷한 결과를 보여주고 있다. 잔차의 분포는 정규분포보다는 Student t분포의 경우 더 우수한 모형 추정 성과를 보여주고 있어, 주가 수익률의 비정규성이 잘 반영되고 있다고 할 수 있다. MSE 기준으로, SVR 추정의 변동성 예측에서는 polynomial 커널함수를 제외하고 linear, radial 커널함수에서 MLE 보다 우수한 예측 성과를 보여주었다. DA 지표에서는 radial 커널함수를 사용한 SVR 기반의 지능형 GARCH 모형이 가장 우수한 변동성의 변화 방향에 대한 방향성 예측력을 보여주었다. 추정된 지능형 변동성 모형을 이용하여 예측된 주식 시장의 변동성 정보가 경제적 의미를 갖는지를 검토하기 위하여 지능형 변동성 거래 전략을 도출하였다. 지능형 변동성 거래 전략 IVTS의 진입규칙은 내일의 변동성이 증가할 것으로 예측되면 변동성을 매수하고 반대로 변동성의 감소가 예상되면 변동성을 매도하는 전략이다. 만약 변동성의 변화 방향이 전일과 동일하다면 기존의 변동성 매수/매도 포지션을 유지한다. 전체적으로 SVR 기반의 GARCH 모형의 투자 성과가 MLE 기반의 GARCH 모형의 투자 성과보다 높게 나타나고 있다. E-GARCH, GJR-GARCH 모형의 경우는 MLE 기반의 GARCH 모형을 이용한 IVTS 전략은 손실이 나지만 SVR 기반의 GARCH 모형을 이용한 IVTS 전략은 수익으로 나타나고 있다. SVR 커널함수에서는 선형 커널함수가 더 좋은 투자 성과를 보여주고 있다. 선형 커널함수의 경우 투자 수익률이 +526.4%를 기록하고 있다. SVR 기반의 GARCH 모형을 이용하는 IVTS 전략의 경우 승률도 51.88%부터 59.7% 사이로 높게 나타나고 있다. 옵션을 이용하는 변동성 매도전략은 방향성 거래전략과 달리 하락할 것으로 예측된 변동성의 예측 방향이 틀려 변동성이 소폭 상승하거나 변동성이 하락하지 않고 제자리에 있더라도 옵션의 시간가치 요인 때문에 전체적으로 수익이 실현될 수도 있다. 정확한 변동성의 예측은 자산의 가격 결정뿐만 아니라 실제 투자에서도 높은 수익률을 얻을 수 있기 때문에 다양한 형태의 인공신경망을 활용하여 더 나은 예측성과를 보이는 변동성 예측 모형을 개발한다면 주식시장의 투자자들에게 좋은 투자 정보를 제공하게 될 것이다.