• Title/Summary/Keyword: portable ECG

Search Result 74, Processing Time 0.019 seconds

Development of Portable Arrhythmia Monitor Using Microcomputer ( II ) (마이크로 컴퓨터를 이용한 휴대용 부정맥 모니터의 개발(II))

  • Lee, Myoung-Ho;Ahn, Ja-Bong;Park, Jang-Choon
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.351-360
    • /
    • 1989
  • This paper describes the design of portable arrhythmia monitor and associated algorithm for automated diagnosis based-on microcomputer in the ambulatory ECG recording, analysis, and transmitting to a hospital host computer immediately through the telephone system. The device differs from Molter recorder in that it does not store normal ECG signals but captures and alarms the ECG during suspected abnormal periods and selected temporal epochs to a central hospital site. This porta file arrhythmia monitor makes use of a general purpose computer and software will be changed to meet the custom requirements of individual physicians and patients. At present it is very obvious that each cardiologist has his own method of analyzing ECG recordings and utilizes past experience more than the firm quantitative analysis of data.

  • PDF

Two algorithms for detecting respiratory rate from portable patient monitoring device (휴대형 심전도 모니터링 장치에서의 2가지 호흡 검출 알고리즘)

  • Kim, Jong-Myoung;Hong, Joo-Hyun;Kim, Nam-Jin;Cha, Eun-Joug;Lee, Tae-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.36-38
    • /
    • 2006
  • In this study, two algorithms for detecting respiratory rate from Portable ECG device were presented. The first algorithms counts the number of ECG samples between R-R peaks, which varies according to respiratory states of patients, such as, exhalation and inhalation. The second algorithms detects the rate by measuring the size of R wave, which also varies according to the respiratory status of patient. These two algorithms were programmed to the laboratory developed ECG device and their usefulness was verified in laboratory environment.

  • PDF

A Development of Portable Bioelectric Signal Measurement System for Industrial Workers' Safety (근로자 안전을 위한 휴대용 생리모니터 시스템 개발)

  • 장준근;허웅;변미경;한상휘;김형태;김형조;김정국
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.05a
    • /
    • pp.241-245
    • /
    • 2004
  • In this paper, we implement a portable bioelectric signal measurement system for the safety of industrial workers. The developed system consists of two parts: the one is boielectric signal measurement unit and the other is signal analyzer system with PDA. The former includes signal processing part, A/D convertor, and 8051 based microprocessor, the latter includes software for signal analysis and display. The developed system detects industrial worker's ECG and displays and stores it to PDA. The ECG data in PDA can be transmitted to PC located in a distance, allowing a doctor to review the ECG and make a treatment decision. A doctor analyzes the ECG data and gives medical treatment to industrial worker.

  • PDF

A Low-Power Portable ECG Touch Sensor with Two Dry Metal Contact Electrodes

  • Yan, Long;Yoo, Hoi-Jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.4
    • /
    • pp.300-308
    • /
    • 2010
  • This paper describes the development of a low-power electrocardiogram (ECG) touch sensor intended for the use with two dry metal electrodes. An equivalent ECG extraction circuit model encountered in a ground-free two-electrode configuration is investigated for an optimal sensor read-out circuit design criteria. From the equivalent circuit model, (1) maximum sensor resolution is derived based on the electrode's background thermal noise, which originates from high electrode-skin contact impedance, together with the input referred noise of instrumentation amplifier (IA), (2) 60 Hz electrostatic coupling from mains and motion artifact are also considered to determine minimum requirement of common mode rejection ratio (CMRR) and input impedance of IA. A dedicated ECG read-out front end incorporating chopping scheme is introduced to provide an input referred circuit noise of 1.3 ${\mu}V_{rms}$ over 0.5 Hz ~ 200 Hz, CMRR of IA > 100 dB, sensor resolution of 7 bits, and dissipating only 36 ${\mu}W$. Together with 8 bits synchronous successive approximation register (SAR) ADC, the sensor IC chip is implemented in 0.18 ${\mu}m$ CMOS technology and integrated on a 5 cm $\times$ 8 cm PCB with two copper patterned electrodes. With the help of proposed touch sensor, ECG signal containing QRS complex and P, T waves are successfully extracted by simply touching the electrodes with two thumbs.

A Study on the Development of the Portable Intelligent QT Analyzer (휴대용 Intelligent QT 분석기의 개발에 관한 연구)

  • 이경중;민혜정
    • Journal of Biomedical Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.57-64
    • /
    • 1990
  • This study describes the design of the portable intelligent QT analyzer which can record and analyze the ambulatory ECG data. System hardware is consisted of the one chip microcomputer(80C31) , A/D, ROM, RAM, LCD display and preamplifier. ECG data were processed by the differentiator and the digital filter. The de- tection of the parameters-QT, QTP and RR interval-was accomplished by the software algorithm using the slope and the amplitude of the processed data. Using this system, the trends of the parameters obtained during the long term could be observed.

  • PDF

Implementation of the Portable ECG System Using Moving Average Filter and Adaptive Signal Processing (이동평균필터와 적응신호처리를 이용한 휴대형 ECG 시스템 구현)

  • Kim, Se-Jin;Jeong, Do-Un
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.989-993
    • /
    • 2008
  • 본 연구에서는 생체신호 중 비침습적으로 측정이 가능하고 많은 건강정보를 포함하고 있는 ECG(electrocardiogram)신호를 일상생활 중 보다 편리하게 모니터링 할 수 있는 시스템을 구현하고자 하였다. 이를 위하여 벨트형 ECG전극 시스템을 개발하였으며, 배터리로 구동 가능한 초소형 저전력 ECG측정시스템을 구현하였다. 또한 측정된 ECG신호의 무선전송을 위하여 Zigbee호환 무선센서노드를 이용하여 초저전력 무선데이터 통신부를 구성하였고 PC상에서 ECG신호를 모니터링하기 위한 프로그램을 구현하였다. 그리고 ECG측정 시 움직임에 따라 발생하는 동잡음의 제거를 위하여 이동평균필터(moving average filter)를 이용하여 기저선 변화를 추출하였고 이를 적응필터의 참조신호로 사용하여 동잡음을 제거하였다. 실험 결과 본 연구에 의해 구현된 ECG전극 및 계측시스템을 통해 활동상태 에서도 ECG계측 가능성을 확인하였으며, 제안한 적응신호처리기법을 통해 활동 중 ECG측정에서 동잡음의 최소화가 가능함을 확인하였다.

  • PDF

Development of Wireless Electronic Cardiogram and Stethoscope (ECGS) to Measure ECG Signal and Heart Sound (심전도와 심음을 측정하기 위한 무선 전자 심전도-심음 청진기 개발)

  • Cho, Han Seok;Kang, Young-Hwan;Park, Jae-Soon;Choi, Jin Gyu;Joung, Yeun-Ho;Koo, Chiwan
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.124-130
    • /
    • 2022
  • In this paper, we proposed a portable electronic cardiogram and stethoscope (ECGS) that can simultaneously perform the electrocardiogram (ECG) and auscultation tests to increase the reliability of diagnosis of heart disease. To measure the ECG and heart sound (HS) at the same time, three ECG electrodes and a microphone sensor were combined into a triangular shape with a width of 90 mm and a height of 97 mm that can be held in one hand. In order to prevent skin problems when they contact the patient's skin, a capacitive coupled electrode was selected as the ECG electrode and a silicone material was used in a chest piece with the microphone sensor. For the signals measured from the electrodes and the chest piece, filters were respectively configured to pass only the signals of 0.01-100 Hz and 20-250 Hz, which are frequency bands for ECG and HS. The filtered ECG and HS analog signals were converted into digital signals and transmitted to a PC using wireless communication for monitoring them. The HS could be auscultated simultaneously using an earphone. The monitored ECG had an SNR of about 34 dB and a P-QRS-T waveform is clearly visible. In addition, the HS had an SNR of about 28 dB and both S1 and S2 are clearly visible. It is expected that it can aid doctors' inexperience in analyzing the ECG and HS.

Implementation of a portable pulse oximeter for SpO2 using Compact Flash Interface (컴팩트 플래쉬 방식의 휴대용 산소포화도 측정 시스템 구현)

  • Lee, Han;Kim, Young-Kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.678-681
    • /
    • 2003
  • In this paper, we aims to develop a microcontroll er-based portable pulse oximeter using Compact Flash Interface. First, portable pulse oxineter system is designed to record 2 channel of biosignals simultaneously, including 1 channel of SpO$_2$ and 1 channel of pulse rate. It is very small and portable. Besides, the system makes it possible to measure a patients condition without an additional medical equipment. We tried to solve the problems generated by a patient's motion. That is, we added an analog circuit to a traditional pulse oximeter in order to eliminate the change of the base line. And we used 2D sector algorithm. As present, SpO$_2$ modules are completed. But there are still many further development needed in order to enhance the function. Especially, compact flash interface remains the most to complete. Second, ECG monitoring system uses almost same as present 3-lead ECG system. But we focus on the analog part, especially in filter. The proposed filter is composed of two parts. One is a filter to remove the power-line interface. The other is a filter to remove the baseline drift. A filter to remove the power-line and the baseline drift is necessarily used in the ECG system. The implemented filter have three features; minimizing the distortion in DC component, removing the harmonic component of power-line frequency. Using compact flash interface, we can easily transfer a patient's personal information and the measured signal data to a network based server environment. That means, it is possible to implement a patient's monitoring system with low cost.

  • PDF

Optimal Selection of Wavelet Coefficients for Electrocardiograph Compression

  • Del Mar Elena, Maria;Quero, Jose Manuel;Borrego, Inmaculada
    • ETRI Journal
    • /
    • v.29 no.4
    • /
    • pp.530-532
    • /
    • 2007
  • This paper presents a simple method to implement a complete on-line portable wireless holter including an electrocardiogram (ECG) monitoring, processing, and communication protocol. The proposed algorithm significantly reduces the hardware resources of threshold estimation for ECG compression, using the standard deviation updated with each new input signal sample. The new method achieves superior performance in terms of hardware complexity, channel occupation and memory requirements, while keeping the ECG quality at a clinically acceptable level.

  • PDF

Design of Zigbee based Portable ECG monitoring system (지그비 기반의 휴대형 심전도 모니터링 시스템 설계)

  • Hong, Joo-Hyun;Kim, Nam-Jin;Cha, Eun-Jong;Lee, Tae-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.51-53
    • /
    • 2006
  • This paper proposes a portable ECG monitoring system, which integrates uptodate PDA and RF communication technology. The aim of the study is to acquire the subject's biomedical signal without any constraint. It has two types of transmission mode, which are total signal transmission mode and HR(heart rate)/SC(step count) transmission mode. In audition, wireless communication technology uses Zigbee Wireless PAN and can work in low-power mode, which is one of the advantages of ZiBbee communication technology. The developed system is composed of a transmitter and a receiver. The transmitter has three-axial acceleration sensor. ECG amplifier and Zigbee communication controller. In total signal transmission mode, it can send data 50 packets per second whose transmission speed corresponds to 300 ECG samples and 60 acceleration samples. In HR/SG transmission mode, it can calculate heart rate from EEG data with 216 samples per second and step count from acceleration data and send a packet every cardiac cycle. The receiver forwards the received data to PDA, where the data can be stored and displayed. Therefore, the developed device enables to continuous monitoring for Activities of Daily Living(ADL). Also, this method will reduce medical costs in the aged society.

  • PDF