• Title/Summary/Keyword: porous windbreak

Search Result 3, Processing Time 0.015 seconds

Numerical Simulation of the Wind Flow Over a Triangular Prism with a Porous Windbreak (다공성 방풍벽이 설치된 삼각프리즘 주위 유동장의 수치모사)

  • 김현구;임희창;이정묵
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.3
    • /
    • pp.223-233
    • /
    • 1999
  • The wind-flow characteristics over a two-dimensional triangular prism with a porous windbreak are numerically investigated. The geometry is a simplified model of large outdoor stack with a frontal wall-type windbreak which is used to prevent particle dispersion by reducing wind speed over stak surface. In the present numerical model, the RNG k-$\varepsilon$ model, the orthogonal grid system and the QUICK scheme are employed for the successful simulation of separated flow. The predicted results are compared and validated with the associated wind-tunnel experiments. In addition, the trajectories of dispersed particles and their sedimentation characteristics are quantitatively investingated using a Lagrangian turbulent-dispersion model.

  • PDF

The Influence of Optical Porosity of Tree Windbreaks on Windward Wind Speed, Erosive Force and Sand Deposition

  • Dafa-Alla, M.D.;Al-Amin, Nawal K.N.
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.2
    • /
    • pp.212-218
    • /
    • 2016
  • The research was conducted windward of an irrigated Acacia amplicips Maslin windbreak established to protect As Salam Cement Plant from winds and moving sands. Two belts with approximate optical porosities of 50% and 20% were studied in River Nile State, Sudan. The research aimed at assessing the efficiency of the two belts in wind speed reduction and sand deposition. Research methods included: (i) estimation of optical porosity, (ii) measurements of windward wind speeds at a control and at distances of 0.5 h (h stands for windbreak height), 1 h and 2 h at two vertical levels of 0.25 h and 0.5 h, (iii) estimation of relative wind speeds at the three positions (distance and height) at windward and (iv) estimation of wind erosive forces and prediction of zones of sand deposition. Results show that while the two belts reduced windward wind speeds at the two levels for the three distances, belt II was more effective. Nearest sand deposition occurred at 2 h and 1h windward of belt II and belt I, respectively, at level 0.25 h. At level 0.5 h, sand was deposited only at 2 h windward of belt II and no sand deposition occurred windward of belt I. The study concludes that less porous windbreaks are more effective in reducing wind speed and in depositing sand in windward direction at a distance of not less than twice the belt height.

The Effects of Windbreaks on Reduction of Suspended Particles (방풍벽에 의한 비산 먼지 저감 효과)

  • Song, Chang-Keun;Kim, Jae-Jin;Song, Dong-Woong
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.315-326
    • /
    • 2007
  • The effects of windbreaks on the reduction of suspended particles are investigated using a computational fluid dynamics (CFD) model with the ${\kappa}-{\varepsilon}$ turbulence closure scheme based on the renormalization group (RNG) theory. In the control experiment, the recirculation zones behind the storage piles are generated and, as a whole, relatively monotonous flow patterns appear. When the windbreaks with the 0% porosity are constructed, the recirculation zones are generated by the windbreaks and very complicated flow patterns appear due to the interference between the windbreaks and storage piles. The porosity of the windbreaks suppresses the generation of the recirculation zone and decreases the wind velocity in the windbreaks as well as that outside the windbreaks. As the emission of suspended particles from the storage piles are closely related with the friction velocity at the surfaces of the storage piles, variation of the friction velocity and total amount of the emission of the suspended particles with the height and porosity of the windbreaks are investigated. The results show that higher and more porous windbreaks emit less suspended particles and that the reduction effect of the porosity is still more effective than that of the height. In the case of the windbreak with 30 m height and 50% porosity, friction velocities above the storage piles are smaller than the critical friction velocity above which particles would be suspended. As a result, total amount of suspended particles are much fewer than those in other cases.