• Title/Summary/Keyword: porous membranes

Search Result 284, Processing Time 0.018 seconds

Separation of Hydrogen-Nitrogen Gases by PDMS-SiO2·B2O3 Composite Membranes (PDMS-SiO2·B2O3 복합막에 의한 수소-질소 기체 분리)

  • Lee, Suk Ho;Kang, Tae Beom
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.115-122
    • /
    • 2015
  • $SiO_2{\cdot}B_2O_3$ was prepared by trimethylborate (TMB)/tetraethylorthosilicate (TEOS) mole ratio 0.01 at $800^{\circ}C$. PDMS[poly(dimethysiloxane)]-$SiO_2{\cdot}B_2O_3$ composite membranes were prepared by adding porous $SiO_2{\cdot}B_2O_3$ to PDMS. To investigate the characteristics of PDMS-$SiO_2{\cdot}B_2O_3$ composite membrane, we observed PDMS-$SiO_2{\cdot}B_2O_3$ composite membrane using TG-DTA, FT-IR, BET, X-ray, and SEM. PDMS-$SiO_2{\cdot}B_2O_3$ composite membrane was studied on the permeabilities of $H_2$ and $N_2$ and the selectivity ($H_2/N_2$). Following the results of TG-DTA, BET, X-ray, FT-IR, $SiO_2{\cdot}B_2O_3$ was the amorphous porous $SiO_2{\cdot}B_2O_3$ with $247.6868m^2/g$ surface area and $37.7821{\AA}$ the mean of pore diameter. According to the TGA measurements, the thermal stability of PDMS-$SiO_2{\cdot}B_2O_3$ composite membrane was enhanced by inserting $SiO_2{\cdot}B_2O_3$. SEM observation showed that the size of dispersed $SiO_2{\cdot}B_2O_3$ in the PDMS-$SiO_2{\cdot}B_2O_3$ composite membrane was about $1{\mu}m$. The increasing of $SiO_2{\cdot}B_2O_3$ content in PDMS leaded the following results in the gas permeation experiment: the permeability of both $H_2$ and $N_2$ was increased, and the permeability of $H_2$ was higher than $N_2$, but the selectivity($H_2/N_2$) was decreased.

Mesoporous Silica-Carbon Composite Membranes for Simultaneous Hydrolysis and Separation of Chiral Epoxide (카본/메조세공 실리카 복합 막을 응용한 키랄 에폭사이드의 가수분해반응과 동시 분리)

  • Choi, Seong Dae;Jeon, Sang Kwon;Park, Geun Woo;Yang, Jin Young;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.503-509
    • /
    • 2014
  • The carbon/porous silica composite membrane was fabricated in a simple manner, which could be successfully for the simultaneous separation and production of chiral epoxides and 1,2-diols, based on their differences in hydrophilic/hydrophobic natures. The chiral Co(III)-$BF_3$ salen catalyst adopted in the membrane reactor system has given the very high enantioselectivity and recyclability in hydrolysis of terminal epoxides such as ECH, 1,2-EB, and SO. The optically pure epoxide and the chiral catalyst were collected in the organic phase after hydrolysis reaction. The hydrophilic water-soluble 1,2-diol product hydrolyzed by chiral salen diffused into the aqueous phase through the SBA-16 or NaY/SBA-16 silica composite layer during the reaction. The water acted simultaneously as a reactant and a solvent in the membrane system. One optical isomer was obtained with high purity and yield, and furthermore the catalysts could be recycled without observable loss in their activity in the continuous flow-type membrane reactor.

Evaluation of the Flux According to Membrane Distillation Module Structure and Operating Conditions Using PVDF Hollow Fiber Membrane (PVDF 중공사 분리막을 이용한 MD 모듈 구조 및 운전 조건에 따른 플럭스 영향 평가)

  • Min, Ji Hee;Lee, Seul ki;Gil, Nam Seok;Park, Min Soo;Kim, Jin Ho
    • Membrane Journal
    • /
    • v.28 no.2
    • /
    • pp.83-89
    • /
    • 2018
  • Hydrophobic porous PVDF hollow fiber membranes for Membrane Distillation (MD) were fabricated by a combination of thermally induced phase separation (TIPS) and stretching. The purpose of this study is to investigate the shape and operating conditions of the module and the effect of piping size on parallel connection. In the optimization experiment of the vacuum membrane distillation module, the flux decreased as the packing density and length of the membrane in the module increased. When the module was connected vertically, it was confirmed that the nearest to the inlet of the vacuum port was the highest flux. In selecting the size of the header pipe of the module, it was confirmed that the maximum flux is shown when the inner diameter area of the hollow fiber membrane and the inner diameter area of the header pipe are the same. Also, it is necessary to find the optimal linear velocity because the higher the linear velocity in the module, the higher the flux, but the pressure acting on the module also increases proportionally.

Effect of Seed Coating Layer on the Microstructure of NaA Zeolite Separation Layer Grown on ${\alpha}$-alumina Support (종결정 코팅층이 다공성 ${\alpha}$-알루미나 지지체 표면에 성장되는 NaA 제올라이트 분리층의 미세구조에 미치는 영향)

  • Kim, Min-Ji;Sharma, Pankaj;Han, Moon-Hee;Cho, Churl-Hee
    • Membrane Journal
    • /
    • v.24 no.5
    • /
    • pp.375-385
    • /
    • 2014
  • NaA zeolite/${\alpha}$-alumina composite membranes were hydrothermally synthesized at $100^{\circ}C$ for 24 hr by using nanosize seed of 100 nm in diameter and an ${\alpha}$-alumina support of $0.1{\mu}m$ in pore diameter, and then effect of seed coating layer on the microstructure of NaA zeolite separation layer was systematically investigated. In cases when nanosize seed was coated with a monolayer, increment in seed coverage induced small grained and thick NaA zeolite separation layer. On the other hand, in case when nanosize seed was coated with a multilayer, much small grained and thick separation layer was formed. It was clear that an uniform monolayer seed coating is required to grow hydrothermally a thin and defect-free NaA zeolite separation layer. In the present study, it was clearly announced that seed coating layer is a key factor to determine the microstructure of NaA zeolite layer, secondary grown on a porous support.

The Effect of LSC/GDC (50 : 50 vol%) Active Layers on Oxygen Transport Properties of LSCF/GDC (20 : 80 vol%) Dual-phase Membrane (LSC/GDC (50 : 50 vol%) 활성층이 LSCF/GDC (20 : 80 vol%) 복합 분리막의 산소투과 거동에 미치는 영향)

  • Cha, Da-Som;Yoo, Chung-Yul;Joo, Jong Hoon;Yu, Ji Haeng;Han, Moon-Hee;Cho, Churl-Hee
    • Membrane Journal
    • /
    • v.24 no.5
    • /
    • pp.367-374
    • /
    • 2014
  • In the present study, disc-type LSCF/GDC (20 : 80 vol%) dual-phase membranes having porous LSC/GDC (50 : 50 vol%) active layers were prepared and effect of active layers on oxygen ion transport behavior was investigated. Introduction of active layers improved drastically oxygen flux due to enhanced electron conductivity and oxygen surface exchange activity. As firing temperature of active layer increased from $900^{\circ}C$ to $1000^{\circ}C$, oxygen flux increased due to improved contact between membrane and active layer or between grains of active layer. The enhanced contact would improve oxygen ion and electron transports from active layer to membrane. Also, as thickness of active layer increased from 10 to $20{\mu}m$, oxygen flux decreased since thick active layer rather prevented oxygen molecules diffusing through the pores. And, STF infiltration improved oxygen flux due to enhanced oxygen reduction reaction rate. The experimental data announces that coating and property control of active layer is an effective method to improve oxygen flux of dual-phase oxygen transport membrane.

Preparation of Porous Separators for Zn Air Batteries through Phase Inversions of Polyetherimide-PVP Solutions (Polyetherimide-PVP 용액의 상전이를 통한 아연공기전지의 다공성 분리막 제조)

  • Cho, Yu Song;Kim, Young Kyoung;Koo, Ja-Kyung
    • Membrane Journal
    • /
    • v.24 no.3
    • /
    • pp.231-239
    • /
    • 2014
  • Polyetherimide (PEI) membranes for separators in Zn air batteries were prepared via phase inversion process from casting solution composed of PEI, n-methylpyrolidone (NMP), and polyvinylpurrolidone (PVP). Furthermore, Zn air batteries were fabricated with the separators. The effects of PEI content and PVP addition in the casting solution on the morphology, mechanical strength, ionic conductivity were investigated through SEM, stress-strain test and ac impedance test. The elelctrochemical performances of the batteries were evaluated through galvanostatic discharge analysis. The mechanical strength of the membrane increased with increasing PEI composition in the casting solution. Little effect of PVP addition into the solution on the mechanical strength of the membrane was investigated. The ionic conductivity value decreased with increasing PEI composition in the solution. With addition of PVP, ionic conductivity of membrane increased until 10 wt% to show the maximum value of 0.1 S/cm. In the higher range of PVP addition over 10%, the ionic conductivity decreased with increasing PVP addition. Ionic conductivity of separator strongly affected the capacity of Zn air battery, and the battery assembled with the separator which showed high ionic conductivity showed high capacity.

Fabrication of Environmental-friendly Materials Using Atomic Layer Deposition (원자층 증착을 이용한 친환경 소재의 제조)

  • Kim, Young Dok
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • In this article, I will introduce recent developments of environmental-friendly materials fabricated using atomic layer deposition (ALD). Advantages of ALD include fine control of the thin film thickness and formation of a homogeneous thin fim on complex-structured three-dimensional substrates. Such advantages of ALD can be exploited for fabricating environmental-friendly materials. Porous membranes such as anodic aluminum oxide (AAO) can be used as a substrate for $TiO_2$ coating with a thickness of about 10 nm, and the $TiO_2$-coated AAO can be used as filter of volatile organic compound such as toluene. The unique structural property of AAO in combination with a high adsorption capacity of amorphous $TiO_2$ can be exploited in this case. $TiO_2$ can be also deposited on nanodiamonds and Ni powder, which can be used as photocatalyst for degradation of toluene, and $CO_2$ reforming of methane catalyst, respectively. One can produce structures, in which the substrates are only partially covered by $TiO_2$ domains, and these structures turns out to be catalytically more active than bare substrates, or complete core-shell structures. We show that the ALD can be widely used not only in the semiconductor industry, but also environmental science.

A Study on Intermediate Layer for Palladium-Based Alloy Composite Membrane Fabrication (팔라듐 합금 복합막 제조를 위한 Intermediate Layer 연구)

  • Hwang, Yong-Mook;Kim, Kwang-Je;So, Won-Wook;Moon, Sang-Jin;Lee, Kwan-Young
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.458-464
    • /
    • 2006
  • The Pd-Ni-Ag alloy composite membrane using modified porous stainless steel (PSS) as a substrate was prepared by a electroless plating technique. In this work, we have introduced the intermediate layer between Pd-based alloy and a metal substrate. As an intermediate layer, the mixtures of nickel powder and inorganic sol such as $SiO_{2}$ sol, $Al_{2}O_{3}$ sol, and $TiO_{2}$ sol were used. The intermediate layers were coated onto a PSS substrate according to various membrane preparation conditions and then $N_{2}$ fluxes through the membranes with different intermediate layers were measured. The surface morphology of the intermediate layer in the mixture of nickel powder and inorganic sol was analyzed using scanning electron microscope (SEM). Finally, the Pd-Ni-Ag alloy composite membrane using the support coated with the mixture of nickel powder and silica as an intermediate layer was fabricated and then the gas permeances for $H_{2}$ and $N_{2}$ through the Pd-based membrane were investigated. The selectivity of $H_2/N_2$ was infinite and the $H_{2}$ flux was $1.39{\times}10^{-2}mol/m^2{\cdot}s$ at the temperature of $500^{\circ}C$ and trans-membrane pressure difference of 1 bar.

Vacuum Stripping of $CO_2$ from Aqueous MEA Solutions Using PDMS-PE Composite Membrane Contactor (MEA 수용액으로부터 PDMS-PE 복합막 접촉기를 이용한 이산화탄소 감압탈거)

  • Kim, Jeong-Hoon;Ahn, Hyo-Seong;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.22 no.1
    • /
    • pp.46-53
    • /
    • 2012
  • Low-temperature carbon dioxide stripping by a vacuum membrane stripping technology was studied as a substitute for the stripping process in a conventional aqueous amine process. Composite membranes with $5{\mu}m$ thickness of PDMS (polydimethylsiloxane) dense layer on a PE (polyethylene) support layer were prepared by a casting method and used as a membrane contactor for $CO_2$ stripping. Aqueous amine solutions of 30 wt% MEA (monoethanolamine) were used as absorbents. $CO_2$ flux was examined under various operating conditions by varying the vacuum pressure (60~360 mmHg (abs.)), stripping temperature ($25{\sim}80^{\circ}C$), $CO_2$ loading (0.5~0.7). $CO_2$ stripping flux increased with increasing temperature and $CO_2$ loading as well as decreasing vacuum pressure. PDMS-PE composite membrane has stability for vacuum stripping process compared with PTFE porous membrane.

Preparation and Characteristics of P(AN-co-MA) Membrane Imprinted with Lysozyme Molecules (라이소자임 분자각인 P(AN-co-MA) 막의 제조와 특성)

  • Min, Kyoung Won;Yoo, Anna;Youm, Kyung Ho
    • Membrane Journal
    • /
    • v.31 no.3
    • /
    • pp.219-227
    • /
    • 2021
  • Molecularly imprinted membrane (MIM) is a porous polymer membrane incorporating with the molecular recognizing sites. In this study, the supporting P(AN-co-MA) asymmetric membrane was prepared by nonsolvent induced phase separation (NIPS) method. And then, MIM with lysozyme template sites was prepared using the surface imprinting method on the P(AN-co-MA) asymmetric membrane introducing a photoactive iniferter and then photo-grafting. The P(AN-co-MA) asymmetric membrane was modified with 3-chloropropyltrimethoxysilane and dithiocarbamate as a photoactive iniferter. To prepare a lysozyme imprinted membrane, the modified P(AN-co-MA) membrane was copolymerized with acrylamide as a functional momomer, N,N'-methylene bisacrylamide as a crosslinker and lysozyme as a template in the UV irradiation environment. The lysozyme imprinted MIM was analyzed by using SEM, FT-IR and EDS measurements. Its results confirm that all the P(AN-co-MA) membranes have an asymmetric structure and the iniferter group is successfully introduced on the membrane surface. The process parameters were adjusted to obtain MIM having the excellent lysozyme adsorption. The maximum lysozyme adsorption capacity reaches at 2.7 mg/g, which is 13 times higher than that of the non imprinted membrane (NIM). The permselective membrane filtration experiments of ovalbumin to lysozyme show that the P(AN-co-MA) MIM preferentially bounds a greater amount of lysozyme.