• Title/Summary/Keyword: porous membranes

Search Result 284, Processing Time 0.022 seconds

Research Trends on Developments of High-performance Perfluorinated Sulfonic Acid-based Polymer Electrolyte Membranes for Polymer Electrolyte Membrane Fuel Cell Applications (고분자 전해질 막 연료전지 응용을 위한 고성능 과불소화계 전해질 막 개발 연구 동향)

  • Choi, Chanhee;Hwang, Seansoo;Kim, Kihyun
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.292-303
    • /
    • 2022
  • An eco-friendly energy conversion device without the emission of pollutants has gained much attention due to the rapid use of fossil fuels inducing carbon dioxide emissions ever since the first industrial revolution in the 18th century. Polymer electrolyte membrane fuel cells (PEMFCs) that can produce water during the reaction without the emission of carbon dioxide are promising devices for automotive and residential applications. As a key component of PEMFCs, polymer electrolyte membranes (PEMs) need to have high proton conductivity and physicochemical stability during the operation. Currently, perfluorinated sulfonic acid-based PEMs (PFSA-PEMs) have been commercialized and utilized in PEMFC systems. Although the PFSA-PEMs are found to meet these criteria, there is an ongoing need to improve these further, to be useful in practical PEMFC operation. In addition, the well-known drawbacks of PFSA-PEMs including low glass transition temperature and high gas crossover need to be improved. Therefore, this review focused on recent trends in the development of high-performance PFSA-PEMs in three different ways. First, control of the side chain of PFSA copolymers can effectively improve the proton conductivity and thermal stability by increasing the ion exchange capacity and polymer crystallinity. Second, the development of composite-type PFSA-PEMs is an effective way to improve proton conductivity and physical stability by incorporating organic/inorganic additives. Finally, the incorporation of porous substrates is also a promising way to develop a thin pore-filling membrane showing low membrane resistance and outstanding durability.

Research Trends on Improvement of Physicochemical Properties of Sulfonated Hydrocarbon Polymer-based Polymer Electrolyte Membranes for Polymer Electrolyte Membrane Fuel Cell Applications (고분자 전해질 막 연료전지 응용을 위한 탄화수소계 고분자 전해질 막의 물성 향상에 관한 연구동향)

  • Inhyeok, Hwang;Davin, Choi;Kihyun, Kim
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.427-441
    • /
    • 2022
  • Polymer electrolyte membrane (PEM) serving as a separator that can prevent the permeation of unreacted fuels as well as an electrolyte that selectively transports protons from the anode to the cathode has been considered a key component of polymer electrolyte membrane fuel cell (PEMFC). The perfluorinated sulfonic acid-based PEMs, represented by Nafion®, have been commercialized in PEMFC systems due to their high proton conductivity and chemical stability. Nevertheless, these PEMs have several inherent drawbacks including high manufacturing costs by the complex synthetic processes and environmental problems caused by producing the toxic gases. Although numerous studies are underway to address these drawbacks including the development of sulfonated hydrocarbon polymer-based PEMs (SHP-PEMs), which can easily control the polymer structures, further improvement of PEM performances and durability is necessary for practical PEMFC applications. Therefore, this study focused on the various strategies for the development of SHP-PEMs with outstanding performance and durability by 1) introducing cross-linked structures, 2) incorporating organic/inorganic composites, and 3) fabricating reinforced-composite membranes using porous substrates.

Scale-up Fabrication of Flat Sheet Membrane by Using a Roll-to-Roll Process (롤투롤 공정을 활용한 평판형 분리막의 대면적 제조 연구)

  • Dong Hyeok Baek;Youngmin Yoo;In-Chul Kim;You-In Park;Seung-Eun Nam;Young Hoon Cho
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.79-86
    • /
    • 2024
  • The flat sheet membrane, one of the representative forms of polymeric membranes, is widely used from material research in laboratories to commercial membrane production due to its ease of fabrication. Porous polymeric flat sheet membranes used in microfiltration and ultrafiltration are mainly fabricated through phase separation processes, utilizing non-solvent-induced and vapor-induced phase separation methods. However, due to the nature of phase separation processes, variations between samples can easily occur depending on the surrounding environment and the experimenter, making it difficult to ensure reproducibility. Therefore, for scaling up and ensuring reproducibility of developed membrane fabrication technologies, there is a need for a controlled environment continuous large-area production device, such as a roll-to-roll manufacturing system. This research compared the changes in membrane characteristics due to differences in manufacturing environments when scaling up laboratory-scale fabrication technologies to roll-to-roll processes using knife and slot die coaters. By optimizing the continuous manufacturing process factors, uniformity of the membrane was ensured during large-area production.

Preparation of Porous Separators for Zn Air Batteries Through Phase Inversions of Polyethersulfone-PVP Solutions (Polyethersulfone-PVP 용액의 상전이를 통한 아연공기전지의 다공성 분리막 제조)

  • Cho, Yu Song;Koo, Ja-Kyung
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.10-19
    • /
    • 2014
  • Porous flat sheet membranes for separators in Zn air batteries were prepared with polyethersulfone (PES) solutions by immersion precipitation phase inversion method. PES/polyvinylpyrrolidone(PVP)/N-methylpyrrolidone(NMP) mixtures were used for casting solutions and water was used for coagulant. With the separators, Zn air batteries were fabricated. The separators were characterized by means of stress-strain test, impedance test and SEM. The Zn air batteries were tested by current interrupt method (CIM) and galvanostatic discharge method. The tensile strength increased with increasing PES content in the casting solution while the ionic conductivity decreased. On the other hand, the ionic conductivity increased while the tensile strength decreased with increasing PVP content. The effect of ionic conductivity trend of the separator in the Zn air battery was confirmed through current interrupt method and galvanostatic discharge method experiments. The battery with the separator from casting solution with higher PES content showed higher IR drop and lower discharge capacity. And the battery with the separator from casting solution with higher PVP content showed lower IR drop and higher discharge capacity.

Thin-Film Composite (TFC) Membranes with Hydrophilic Ethyl Cellulose-g-poly(ethylene glycol) (EP) Substrates for Forward Osmosis (FO) Application (친수성을 가지는 에틸셀룰로스-폴리에틸렌글리콜 가지형 고분자의 정삼투 복합막 지지층으로의 응용)

  • Yu, Yun Ah;Kim, Jin-joo;Kang, Hyo;Lee, Jong-Chan
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.510-518
    • /
    • 2016
  • Ethyl cellulose-g-poly(ethylene glycol) (EP) was synthesized by esterification of carboxylic acid functionalized methoxy polyethylene glycol (MPEG-COOH) with ethyl cellulose (EC) in order to develop a hydrophilic substrate for thin-film composite (TFC) membrane in a forward osmosis (FO) system. A porous EP substrate, fabricated by a non-solvent induced phase separation method, was found to be more hydrophilic than the EC substrate due to the presence of polyethylene glycol (PEG) side chains in the EP. Since the EP substrate exhibits smaller water contact angles and higher porosity, the structural parameter (S) of TFC-EP is smaller than that of TFC-EC, indicating that internal concentration polarization (ICP) within porous substrates can occur less when TFC-EP is used as a membrane. For example, the water flux value of the TFC-EP is 15.7 LMH, whereas the water flux value of the TFC-EC is only 6.6 LMH. Therefore, we strongly believe that the TFC-EP could be a promising candidate with good FO performances.

Prepration of Hydoxy Polyimde Membranes and Their Carbon Dioxide Permeation Property (Hydroxy Polyimide 막의 제조와 이산화탄소 투과 특성)

  • Woo, Seung-Moon;Choi, Jong-Jin;Nam, Sang-Yong
    • Membrane Journal
    • /
    • v.22 no.2
    • /
    • pp.128-134
    • /
    • 2012
  • In this study, hydroxy polyimide (HPI) was prepared for non-porous membrane by solvent evaporation method. As the result of gas permeance properties measurement, $CO_2$ permeability was 85 Barrer and the $CO_2/N_2$ selectivity was 23 at $30^{\circ}C$. Flat sheet membrane and hollow fiber membrane were prepared by using ternary system of polymer, solvent and non-solvent additive. Morphologies and gas permeance properties were measured by FE-SEM and bubble flow meter. Each $CO_2$ permeability of 18.28 GPU, 70 GPU and $CO_2/N_2$ selectivity of 6.72, 8.63 at $30^{\circ}C$ in the flat sheet membrane and hollow fiber membrane. Hollow fiber membrane has gas permeance property better than flat sheet membrane.

Study on Characterization of Galvanic Oxygen Sensor (갈바니식 산소센서의 특성에 관한 연구)

  • Cho, Dong-Hoe;Park, Myon-Yong;Lee, Byoung-Cho;Chung, Koo-Chun;Park, Jongman;Lee, Kyeong-Jae;Chung, Sung-Sook;Park, Sun-Young;Lee, Kwang-Woo
    • Analytical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.371-378
    • /
    • 1994
  • The detection range of this galvanic oxygen sensor for oxygen concentration was 0.0% to 20.0%. By using gold or silver as cathode, reproducible response time and sensitivity to change of oxygen concentration were observed. The anode was Pb-Sn-Ca alloy. Oxygen selective permeable membrane was hydrophobic and porous Teflon film. The effect of the membranes varying in thickness have been studied on the temperature($10{\sim}50^{\circ}C$) and relative humidity(R. H 0~99%). Lead acetate buffer solution as the electrolyte has shown a high output voltage and longer life.

  • PDF

Performance Study of Membrane Capacitive Deionization Process Applied by Perfluoropolymer and Aminated Poly(ether imide) Ion Exchange Membranes (불소화고분자와 아민화된 폴리이서이미드 이온교환막을 적용한 축전식 탈염공정의 성능 연구)

  • Kim, Ji Seon;Jeong, Joo Hwan;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.25 no.1
    • /
    • pp.60-66
    • /
    • 2015
  • To investigate the performance of the composite carbon electrodes which the ion exchange polymers were directly casted onto porous carbon electrode surfaces, the adsorption/desorption experiments were carried out by varying the feed concentration, feed flow rate, and desorption voltages for the NaCl solution. When the feed concentration was 100 mg/L, the increase of the adsorption time led to the increase of the salt removal due to the increase of the residence time inside the cell while the increase of the feed flow rate from 15 mL/min to 23 mL/min gave the decrease of the salt removal efficiency, 12% because of the short residence time. When the feed concentration was 200 mg/L, the salt removal was shown 10~15% low because of the incomplete desorption within the desorption intervals.

Effect of Heat Capacity of Coagulant on Morphology of PVDF-Silica Mixture Through TIPS Process for the Application of Porous Membrane (다공성 분리막으로 응용을 위한 PVDF-실리카 혼합물의 응고액 열용량 변화에 따른 모폴로지 변화)

  • Lee, Jeong Woo;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.458-467
    • /
    • 2017
  • In this study, we prepared PVDF membranes via TIPS for water treatment applications. PVDF was used for its excellent chemical and mechanical properties. The effect of coagulation bath composition, temperature, and heat capacity on the overall membrane morphology was studied and observed using SEM. A mixture of DOP and DBP was used as the diluent, and silica was used as an additive. It was observed that as the heat capacity of the coagulation bath increased, the crystallization rate of PVDF decreased yielding larger pores. Also, as the heat capacity of the coagulation bath decreased, the crystallization rate of PVDF increased yielding smaller pores.

Removal of Ammonia in Water using Acid-impregnated Activated Carbon and Dynamic Membrane System (산 첨착활성탄과 동적막 공정을 이용한 수중 암모니아 제거)

  • Choi, Won Kyung;Shin, Dong-Ho;Lee, Yong Taek
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.310-316
    • /
    • 2006
  • In this study, activated carbon in a powder form was used to remove dissolved ammonia which causes a fouling smell in water. Since the adsorption capacity of common powder activated carbon is not high enough, we prepared powder activated carbon deposited on an acid solution to enhance the adsorption capacity. The acid-impregnated activated carbon was applied on the surface of porous fibril support ($10{\sim}50{\mu}m$) by which adsorption and separation processes take place simultaneously by varying effective pressure. As the result, the ammonia removal efficiency is above 60% in the mixing process which is 10~15% higher than general powder activated carbon. From the result of an experiment on the pure permeable test of a dynamic membrane, its transmittance is 400~700 LMH (liter per hour), indicating that the prepared membrane works as a microfiltration membrane. Therefore, it is expected that the membrane prepared in this way would improve the efficiency of water treatment than conventional membranes.