• Title/Summary/Keyword: porous media model

Search Result 210, Processing Time 0.021 seconds

CONSEQUENCE OF BACKWARD EULER AND CRANK-NICOLSOM TECHNIQUES IN THE FINITE ELEMENT MODEL FOR THE NUMERICAL SOLUTION OF VARIABLY SATURATED FLOW PROBLEMS

  • ISLAM, M.S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.197-215
    • /
    • 2015
  • Modeling water flow in variably saturated, porous media is important in many branches of science and engineering. Highly nonlinear relationships between water content and hydraulic conductivity and soil-water pressure result in very steep wetting fronts causing numerical problems. These include poor efficiency when modeling water infiltration into very dry porous media, and numerical oscillation near a steep wetting front. A one-dimensional finite element formulation is developed for the numerical simulation of variably saturated flow systems. First order backward Euler implicit and second order Crank-Nicolson time discretization schemes are adopted as a solution strategy in this formulation based on Picard and Newton iterative techniques. Five examples are used to investigate the numerical performance of two approaches and the different factors are highlighted that can affect their convergence and efficiency. The first test case deals with sharp moisture front that infiltrates into the soil column. It shows the capability of providing a mass-conservative behavior. Saturated conditions are not developed in the second test case. Involving of dry initial condition and steep wetting front are the main numerical complexity of the third test example. Fourth test case is a rapid infiltration of water from the surface, followed by a period of redistribution of the water due to the dynamic boundary condition. The last one-dimensional test case involves flow into a layered soil with variable initial conditions. The numerical results indicate that the Crank-Nicolson scheme is inefficient compared to fully implicit backward Euler scheme for the layered soil problem but offers same accuracy for the other homogeneous soil cases.

Approximations for Array of Point Sources in Groundwater Contaminant Transport Modeling (지하수 오염물질 이동모형에 있어서 배열된 점원의 근사방법 연구)

  • Kim, Chang-Lak
    • Nuclear Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.132-136
    • /
    • 1988
  • A strategic question in groundwater contaminant transport modeling is whether we need to treat waste packages or drums as individual, discrete sources or as approximately lumped sources. In this paper we present analyses of array sources in porous media. We analyze a planar array of sources in porous media with groundwater flow. We compare the concentration field predicted by a detailed model of individual point sources to concentration fields predicted by an infinite plane source and a single point source, all of the same equivalent strength. From this study we identified three regions: (1) a region close to the sources where the effects of adjacent sources are significant and individual source models should be used, (2) a region extending from a few meters to hundreds to thousands of meters downstream, where an equivalent source of infinite extent gives accurate results, and (3) a far-field region, where in an equivalent source of finite extent gives accurate results.

  • PDF

Numerical Discussion on Natural Convection in Soils (지반내 자연대류에 대한 수치해석적 논의)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.2
    • /
    • pp.35-47
    • /
    • 2017
  • Thermal behavior of soils is mainly focused on thermal conduction, and the study of natural convection is very limited. Increase of soil temperature causes natural convection due to buoyancy from density change of pore water. The limitations of the analysis using fluid dynamics for natural convection in the porous media is discussed and a new numerical analysis is presented for natural convection in porous media using THM governing equations fully coupled in the macroscopic view. Numerical experiments for thermal probe show increase in the uncertainty of thermal conductivity estimated without considering natural convection, and suggest appropriate experimental procedures to minimize errors between analytical model and numerical results. Burial of submarine power cable should not exceed the temperature changes of $2^{\circ}C$ at the depth of 0.2 m under the seabed, but numerical analysis for high permeable ground exceeds this criterion. Temperature and THM properties of the seafloor are important design factors for the burial of power cable, and in this case effects of natural convection should be considered. Especially, in the presence of heat sources in soils with high permeability, natural convection due to the variation of density of pore water should be considered as an important heat transfer mechanism.

Groundwater Flow Characterization in the Vicinity of the Underground Caverns by Groundwater Level Changes (지하수위 변화에 따른 지하공동 주변의 지하수 유동특성 해석)

  • 강재기;양형식;김경수;김천수
    • Tunnel and Underground Space
    • /
    • v.13 no.6
    • /
    • pp.465-475
    • /
    • 2003
  • Groundwater inflow into the caverns constructed in fractured rock mass was simulated by numerical modeling, NAPSAC (DFN, discrete fracture network model) and NAMMU (CPM, continuous porous media model), a finite-element software package for groundwater flow in 3D fractured media developed by AEA Technology, UK. The input parameters for modeling were determined on surface fracture survey, core logging and single hole hydraulic test data. In order to predict the groundwater inflow more accurately, the anisotropic hydraulic conductivity was considered. The anisotropic hydraulic conductivities were calculated from the fracture network properties. With a minor adjustment during model calibration, the numerical modeling is able to reproduce reasonably groundwater inflows into cavern and the travel length and times to the ground surface along the flow paths in the normal, dry and rainy seasons.

Direct Numerical Simulation on the Nonlinear Dynamic Responses among Wave, Structure and Seabed ($\cdot$구조물$\cdot$지반의 비선형 동적응답해석을 위한 직접수치해석기법의 개발)

  • Hur Dong Soo;Kim Chang Hoon;Lee Kwang Ho;Kim Do Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.2
    • /
    • pp.86-97
    • /
    • 2005
  • Accurate estimation of the wave-induced pore water pressure in the seabed is key factor in studying the stability of the seabed in the vicinity of coastal structure. Most of the existing numerical models for wave structure seabed interaction have been linked through applying hybrid numerical technique which is analysis method separating the wave field and seabed regime. Therefore, it is necessary to develope a numerical model f3r simulating accurately wave$\cdot$structure$\cdot$ seabed interaction under wave loadings by the single domain approach for wave field and seabed regime together. In this study, direct numerical simulation is newly proposed. In this model, modeled fluid drag has been used to detect the hydraulic properties according to the varied geometrical shape inside the porous media by considering the turbulence resistance as well as laminar resistance. Contrary to hybrid numerical technique, direct numerical simulation avoids the explicit formulation of the boundary conditions at the fluid/porous media interface. A good agreement has been obtained by the comparison between existed experimental results by hydraulic model test and direct numerical simulation results far wave $\cdot$structure$\cdot$seabed interaction. Therefore, the newly proposed numerical model is a powerful tool for estimating the nonlinear dynamic responses among a structure, its seabed foundation and water waves.

Computer based FEM stabilization of oxygen transport model for material and energy simulation in corroding reinforced concrete

  • Hussain, Raja Rizwan
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.669-680
    • /
    • 2013
  • This paper unveils a new computer based stabilization methodology for automated modeling analysis and its experimental verification for corrosion in reinforced concrete structures under the effect of varying oxygen concentration. Various corrosion cells with different concrete compositions under four different environmental conditions (air dry, submerged, 95% R.H and alternate wetting-drying) have been investigated under controlled laboratory conditions. The results of these laboratory tests were utilized with an automated computer-aided simulation model. This model based on mass and energy stabilization through the porous media for the corrosion process was coupled with modified stabilization methodology. By this coupling, it was possible to predict, maintain and transfer the influence of oxygen concentration on the corrosion rate of the reinforcement in concrete under various defined conditions satisfactorily. The variation in oxygen concentration available for corrosion reaction has been taken into account simulating the actual field conditions such as by varying concrete cover depth, relative humidity, water-cement ratio etc. The modeling task has been incorporated by the use of a computer based durability model as a finite element computational approach for stabilizing the effect of oxygen on corrosion of reinforced concrete structures.

A Numerical Study of the Turbulent Flow Characteristics in the Inlet Transition Square Duct Based on Roof Configuration (4각 안내덕트 루프형상에 의한 난류특성변화 수치해석)

  • Yoo, Geun-Jong;Choi, Hoon-Ki;Choi, Kee-Lim;Shin, Byeong-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.541-551
    • /
    • 2009
  • Configuration of the inlet transition square duct (hereinafter referred to as "transition duct") for heat recovery steam generator (hereinafter referred to as "HRSG") in combined cycle power plant is limited by the construction type of HRSG and plant site condition. The main purpose of the present study is to analyze the effect of a variation in turbulent flow pattern by roof slop angle change of transition duct for horizontal HRSG, which is influencing heat flux in heat transfer structure to the finned tube bank. In this study, a computational fluid dynamics(CFD) is applied to predict turbulent flow pattern and comparisons are made to 1/12th scale cold model test data for verification. Re-normalization group theory (RNG) based k-$\epsilon$ turbulent model, which improves the accuracy for rapidly strained flow and swirling flow in comparison with standard k-$\epsilon$ model, is used for the results cited in this study. To reduce the amount of computer resources required for modeling the finned tube bank, a porous media model is used.

Dynamic analyses for an axially-loaded pile in a transverse-isotropic, fluid-filled, poro-visco-elastic soil underlain by rigid base

  • Zhang, Shiping;Zhang, Junhui;Zeng, Ling;Yu, Cheng;Zheng, Yun
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.53-63
    • /
    • 2022
  • Simplified analytical solutions are developed for the dynamic analyses of an axially loaded pile foundation embedded in a transverse-isotropic, fluid-filled, poro-visco-elastic soil with rigid substratum. The pile is modeled as a viscoelastic Rayleigh-Love rod, while the surrounding soil is regarded as a transversely isotropic, liquid-saturated, viscoelastic, porous medium of which the mechanical behavior is represented by the Boer's poroelastic media model and the fractional derivative model. Upon the separation of variables, the frequency-domain responses for the impedance function of the pile top, and the vertical displacement and the axial force along the pile shaft are gained. Then by virtue of the convolution theorem and the inverse Fourier transform, the time-domain velocity response of the pile head is derived. The presented solutions are validated, compared to the existing solution, the finite element model (FEM) results, and the field test data. Parametric analyses are made to show the effect of the soil anisotropy and the excitation frequency on the pile-soil dynamic responses.

RECENT IMPROVEMENTS IN THE CUPID CODE FOR A MULTI-DIMENSIONAL TWO-PHASE FLOW ANALYSIS OF NUCLEAR REACTOR COMPONENTS

  • Yoon, Han Young;Lee, Jae Ryong;Kim, Hyungrae;Park, Ik Kyu;Song, Chul-Hwa;Cho, Hyoung Kyu;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.655-666
    • /
    • 2014
  • The CUPID code has been developed at KAERI for a transient, three-dimensional analysis of a two-phase flow in light water nuclear reactor components. It can provide both a component-scale and a CFD-scale simulation by using a porous media or an open media model for a two-phase flow. In this paper, recent advances in the CUPID code are presented in three sections. First, the domain decomposition parallel method implemented in the CUPID code is described with the parallel efficiency test for multiple processors. Then, the coupling of CUPID-MARS via heat structure is introduced, where CUPID has been coupled with a system-scale thermal-hydraulics code, MARS, through the heat structure. The coupled code has been applied to a multi-scale thermal-hydraulic analysis of a pool mixing test. Finally, CUPID-SG is developed for analyzing two-phase flows in PWR steam generators. Physical models and validation results of CUPID-SG are discussed.

Study on the separation of large ionic-molecules by electrofiltration (전기여과에 의한 거대이온성 분자체 분리현상연구)

  • Park Young-Gyu
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.18-23
    • /
    • 1998
  • Theoretical model has been derived in the electrophoretic separation system where an electric potential is applied to the system in the axial direction. The effect of electrophoretic convection in the polymeric media is significantly contributed to separate large ionic-molecules because the conformation of large ionic-molecule quickly orients in the field direction. The dependence of the transport in the polymeric media upon field intensity and molecular size aids in understanding the transport of large ionic-molecule in the system, since the convective velocity of large ionic-molecule is accelerated inside a porous material. The separation of two different large ionic-molecules is predicted with a value of $(Pe_t/Pe_g)$ of individual large ionic-molecule using an operator and the reptation theories.