• 제목/요약/키워드: porous functionally graded beam

Search Result 68, Processing Time 0.019 seconds

Thermal post-buckling and primary resonance of porous functionally graded beams: Effect of elastic foundations and geometric imperfection

  • Jia-Qin Xu;Gui-Lin She
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.543-551
    • /
    • 2023
  • In this article, thermal post-buckling and primary resonance of the porous functionally graded material (FGM) beams in thermal environment considering the geometric imperfection are studied, the material properties of FGM beams are assumed to vary along the thickness of the beam, meanwhile, the porosity volume fraction, geometric imperfection, temperature, and the elastic foundation are considered, using the Euler-Lagrange equation, the nonlinear vibration equations are derived, after the dimensionless processing, the dimensionless equations of motion can be obtained. Then, the two-step perturbation method is applied to solve the vibration problems, the resonance and thermal post-buckling response relations are obtained. Finally, the functionally graded index, the porosity volume fraction, temperature, geometric imperfection, and the elastic foundation on the resonance behaviors of the FGM beams are presented. It can be found that these parameters can influence the thermal post-buckling and primary resonance problems.

Formulation and evaluation a finite element model for free vibration and buckling behaviours of functionally graded porous (FGP) beams

  • Abdelhak Mesbah;Zakaria Belabed;Khaled Amara;Abdelouahed Tounsi;Abdelmoumen A. Bousahla;Fouad Bourada
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.291-309
    • /
    • 2023
  • This paper addresses the finite element modeling of functionally graded porous (FGP) beams for free vibration and buckling behaviour cases. The formulated finite element is based on simple and efficient higher order shear deformation theory. The key feature of this formulation is that it deals with Euler-Bernoulli beam theory with only three unknowns without requiring any shear correction factor. In fact, the presented two-noded beam element has three degrees of freedom per node, and the discrete model guarantees the interelement continuity by using both C0 and C1 continuities for the displacement field and its first derivative shape functions, respectively. The weak form of the governing equations is obtained from the Hamilton principle of FGP beams to generate the elementary stiffness, geometric, and mass matrices. By deploying the isoparametric coordinate system, the derived elementary matrices are computed using the Gauss quadrature rule. To overcome the shear-locking phenomenon, the reduced integration technique is used for the shear strain energy. Furthermore, the effect of porosity distribution patterns on the free vibration and buckling behaviours of porous functionally graded beams in various parameters is investigated. The obtained results extend and improve those predicted previously by alternative existing theories, in which significant parameters such as material distribution, geometrical configuration, boundary conditions, and porosity distributions are considered and discussed in detailed numerical comparisons. Determining the impacts of these parameters on natural frequencies and critical buckling loads play an essential role in the manufacturing process of such materials and their related mechanical modeling in aerospace, nuclear, civil, and other structures.

Thermo-mechanical vibration analysis of temperature-dependent porous FG beams based on Timoshenko beam theory

  • Ebrahimi, Farzad;Jafari, Ali
    • Structural Engineering and Mechanics
    • /
    • v.59 no.2
    • /
    • pp.343-371
    • /
    • 2016
  • In this paper thermo-mechanical vibration analysis of a porous functionally graded (FG) Timoshenko beam in thermal environment with various boundary conditions are performed by employing a semi analytical differential transform method (DTM) and presenting a Navier type solution method for the first time. The temperature-dependent material properties of FG beam are supposed to vary through thickness direction of the constituents according to the power-law distribution which is modified to approximate the material properties with the porosity phases. Also the porous material properties vary through the thickness of the beam with even and uneven distribution. Two types of thermal loadings, namely, uniform and linear temperature rises through thickness direction are considered. Derivation of equations is based on the Timoshenko beam theory in order to consider the effect of both shear deformation and rotary inertia. Hamilton's principle is applied to obtain the governing differential equation of motion and boundary conditions. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of several parameters such as porosity distributions, porosity volume fraction, thermal effect, boundary conditions and power-low exponent on the natural frequencies of the FG beams in detail. It is explicitly shown that the vibration behavior of porous FG beams is significantly influenced by these effects. Numerical results are presented to serve benchmarks for future analyses of FG beams with porosity phases.

Static analysis of 2D-FG nonlocal porous tube using gradient strain theory and based on the first and higher-order beam theory

  • Xiaozhong Zhang;Jianfeng Li;Yan Cui;Mostafa Habibi;H. Elhosiny Ali;Ibrahim Albaijan;Tayebeh Mahmoudi
    • Steel and Composite Structures
    • /
    • v.49 no.3
    • /
    • pp.293-306
    • /
    • 2023
  • This article focuses on the study of the buckling behavior of two-dimensional functionally graded (2D-FG) nanosize tubes, including porosity, based on the first shear deformation and higher-order theory of the tube. The nano-scale tube is simulated using the nonlocal gradient strain theory, and the general equations and boundary conditions are derived using Hamilton's principle for the Zhang-Fu's tube model (as a higher-order theory) and Timoshenko beam theory. Finally, the derived equations are solved using a numerical method for both simply-supported and clamped boundary conditions. A parametric study is performed to investigate the effects of different parameters, such as axial and radial FG power indices, porosity parameter, and nonlocal gradient strain parameters, on the buckling behavior of the bi-dimensional functionally graded porous tube. Keywords: Nonlocal strain gradient theory; buckling; Zhang-Fu's tube model; Timoshenko theory; Two-dimensional functionally graded materials; Nanotubes; Higher-order theory.

Exact third-order static and free vibration analyses of functionally graded porous curved beam

  • Beg, Mirza S.;Khalid, Hasan M.;Yasin, Mohd Y.;Hadji, L.
    • Steel and Composite Structures
    • /
    • v.39 no.1
    • /
    • pp.1-20
    • /
    • 2021
  • An exact solution based on refined third-order theory (TOT) has been presented for functionally graded porous curved beams having deep curvature. The displacement field of the refined TOT is derived by imposing the shear free conditions at the outer and inner surfaces of curved beams. The properties of the two phase composite are tailored according the power law rule and the effective properties are computed using Mori-Tanaka homogenization scheme. The equations of motion as well as consistent boundary conditions are derived using the Hamilton's principle. The curved beam stiffness coefficients (A, B, D) are obtained numerically using six-point Gauss integration scheme without compromising the accuracy due to deepness (1 + z/R) terms. The porosity has been modeled assuming symmetric (even) as well as asymmetric (uneven) distributions across the cross section of curved beam. The programming has been performed in MATLAB and is validated with the results available in the literature as well as 2D finite element model developed in ABAQUS. The effect of inclusion of 1 + z/R terms is studied for deflection, stresses and natural frequencies for FG curved beams of different radii of curvature. Results presented in this work will be useful for comparison of future studies.

On the elastic stability and free vibration responses of functionally graded porous beams resting on Winkler-Pasternak foundations via finite element computation

  • Zakaria Belabed;Abdelouahed Tounsi;Mohammed A. Al-Osta;Abdeldjebbar Tounsi;Hoang-Le Minh
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.183-204
    • /
    • 2024
  • In current investigation, a novel beam finite element model is formulated to analyze the buckling and free vibration responses of functionally graded porous beams resting on Winkler-Pasternak elastic foundations. The novelty lies in the formulation of a simplified finite element model with only three degrees of freedom per node, integrating both C0 and C1 continuity requirements according to Lagrange and Hermite interpolations, respectively, in isoparametric coordinate while emphasizing the impact of z-coordinate-dependent porosity on vibration and buckling responses. The proposed model has been validated and demonstrating high accuracy when compared to previously published solutions. A detailed parametric examination is performed, highlighting the influence of porosity distribution, foundation parameters, slenderness ratio, and boundary conditions. Unlike existing numerical techniques, the proposed element achieves a high rate of convergence with reduced computational complexity. Additionally, the model's adaptability to various mechanical problems and structural geometries is showcased through the numerical evaluation of elastic foundations, with results in strong agreement with the theoretical formulation. In light of the findings, porosity significantly affects the mechanical integrity of FGP beams on elastic foundations, with the advanced beam element offering a stable, efficient model for future research and this in-depth investigation enriches porous structure simulations in a field with limited current research, necessitating additional exploration and investigation.

Bending analysis of porous microbeams based on the modified strain gradient theory including stretching effect

  • Lemya Hanifi Hachemi Amar;Abdelhakim Kaci;Aicha Bessaim;Mohammed Sid Ahmed Houari;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.3
    • /
    • pp.225-238
    • /
    • 2024
  • In this paper, a quasi-3D hyperbolic shear deformation theory for the bending responses of a functionally graded (FG) porous micro-beam is based on a modified couple stress theory requiring only one material length scale parameter that can capture the size influence. The model proposed accounts for both shear and normal deformation effects through an illustrative variation of all displacements across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the micro-beam. The effective material properties of the functionally graded micro-beam are assumed to vary in the thickness direction and are estimated using the homogenization method of power law distribution, which is modified to approximate the porous material properties with even and uneven distributions of porosity phases. The equilibrium equations are obtained using the virtual work principle and solved using Navier's technique. The validity of the derived formulation is established by comparing it with the ones available in the literature. Numerical examples are presented to investigate the influences of the power law index, material length scale parameter, beam thickness, and shear and normal deformation effects on the mechanical characteristics of the FG micro-beam. The results demonstrate that the inclusion of the size effects increases the microbeams stiffness, which consequently leads to a reduction in deflections. In contrast, the shear and normal deformation effects are just the opposite.

Vibration analysis of nonlocal porous nanobeams made of functionally graded material

  • Berghouti, Hana;Adda Bedia, E.A.;Benkhedda, Amina;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.7 no.5
    • /
    • pp.351-364
    • /
    • 2019
  • In this work, dynamic behavior of functionally graded (FG) porous nano-beams is studied based on nonlocal nth-order shear deformation theory which takes into the effect of shear deformation without considering shear correction factors. It has been observed that during the manufacture of "functionally graded materials" (FGMs), micro-voids and porosities can occur inside the material. Thus, in this work, the investigation of the dynamic analysis of FG beams taking into account the influence of these imperfections is established. Material characteristics of the FG beam are supposed to be vary continuously within thickness direction according to a "power-law scheme" which is modified to approximate material characteristics for considering the influence of porosities. A comparative study with the known results in the literature confirms the accuracy and efficiency of the current nonlocal nth-order shear deformation theory.

Shear correction factors of a new exponential functionally graded porous beams

  • Mohammed Sid Ahmed Houari;Aicha Bessaim;Tarek Merzouki;AhmedAmine Daikh;Aman Garg;Abdelouahed Tounsi;Mohamed A. Eltaher;Mohamed-Ouejdi Belarbi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • This article introduces a novel analytical model for examining the impact of porosity on shear correction factors (SCFs) in functionally graded porous beams (FGPB). The study employs uneven and logarithmic-uneven modified porosity-dependent power-law functions, which are distributed throughout the thickness of the FGP beams. Additionally, a modified exponential-power law function is used to estimate the effective mechanical properties of functionally graded porous beams. The correction factor plays a crucial role in this analysis as it appears as a coefficient in the expression for the transverse shear stress resultant. It compensatesfor the assumption that the shear strain is uniform across the depth of the cross-section. By applying the energy equivalence principle, a general expression for static SCFs in FGPBs is derived. The resulting expression aligns with the findings obtained from Reissner's analysis, particularly when transitioning from the two-dimensional case (plate) to the one-dimensional case (beam). The article presents a convenient algebraic form of the solution and provides new case studies to demonstrate the practicality of the proposed formulation. Numerical results are also presented to illustrate the influence of porosity distribution on SCFs for different types of FGPBs. Furthermore, the article validates the numerical consistency of the mechanical property changesin FG beams without porosity and the SCF by comparing them with available results.

Study of the dynamic behavior of porous functionally graded suspension structural systems using finite elements method

  • Ayman E., Nabawy;Ayman M.M., Abdelhaleem;Soliman. S., Alieldin;Alaa A., Abdelrahman
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.697-713
    • /
    • 2022
  • In the context of the finite elements method, the dynamic behavior of porous functionally graded double wishbone vehicle suspension structural system incorporating joints flexibility constraints under road bump excitation is studied and analyzed. The functionally graded material properties distribution through the thickness direction is simulated by the power law including the porosity effect. To explore the porosity effects, both classical and adopted porosity models are considered based on even porosity distribution pattern. The dynamic equations of motion are derived based on the Hamiltonian principle. Closed forms of the inertia and material stiffness components are derived. Based on the plane frame isoparametric Timoshenko beam element, the dynamic finite elements equations are developed incorporating joint flexibilities constraints. The Newmark's implicit direct integration methodology is utilized to obtain the transient vibration time response under road bump excitation. The presented procedure is validated by comparing the computational model results with the available numerical solutions and an excellent agreement is observed. Obtained results show that the decrease of porosity percentage and material graduation tends to decrease the deflection as well as the resulting stresses of the control arms thus improving the dynamic performance and increasing the service lifetime of the control arms.