• 제목/요약/키워드: porous foam

Search Result 164, Processing Time 0.024 seconds

[ De-NOx ] Characteristics for Pt/γ-Alumina/Cordierite Foam Filter of Beads Shape (Pt/γ-Alumina/Cordierite 비드형 세라믹 폼 필터의 NOx 제거 특성)

  • Park, Jung-Wook;Park, Jay-Hyun;Park, Jai-Koo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.3
    • /
    • pp.277-285
    • /
    • 2007
  • Porous cordierite beads, of which the average pore size was $130{\mu}m$ and porosity was about 80%, were prepared by the foaming method and then their application as support of the $Pt/{\gamma}-alumina$ catalyst for $NO_x$, reduction with propene was investigated. The pressure drop of a 2 mm porous beads filter was less than that of a 1 mm porous beads filter and the difference in pressure drop between these two increased as the flow rate increased. The catalytic activity of $Pt/{\gamma}-alumina$ washcoated on the porous bead was tested with varying Pt loading $(0.005{\sim}0.1g/cm^3),\;C_3H_6/NO$ mole ratio $(0.5{\sim}8)$, space velocity $(20,000{\sim}30,000h^{-1})$ and oxygen contents (1 and 8). Pt loading of $0.04g/cm^3$ showed the highest activity for $NO_x$ conversion. The $De-NO_x$, test was operated in the temperature range of $200{\sim}400^{\circ}C$ and the best operation temperature of the catalytic filter is about $250^{\circ}C$. As the C/N ratio increased, increase of the $NO_x$, conversion might result from the increase in exhaustion of the amount of oxygen by the reduction of hydrocarbon. $NO_x$ conversion at $20,000h^{-1}$ of space velocity shows a maximum 34% higher conversion than that at $30,000h^{-1}$. On condition that $O_2$ was 5%, space velocity was $20,000h^{-1}$ and the C/N ratio was 8, the $NO_x$ conversion exhibited a maximum of 40% at $250^{\circ}C$.

A review of numerical approach for dynamic response of strain gradient metal foam shells under constant velocity moving loads

  • Fenjan, Raad M.;Ahmed, Ridha A.;Hamad, Luay Badr;Faleh, Nadhim M.
    • Advances in Computational Design
    • /
    • v.5 no.4
    • /
    • pp.349-362
    • /
    • 2020
  • Dynamic characteristics of a scale-dependent porous metal foam cylindrical shell under a traveling load have been explored within this article based on a numerical approach. Within the material texture of the metal foams, uniform and non-uniform porosities may be dispersed. Based upon differential quadrature method (DQM) and Laplace transforms, the equations of motion for a shear deformable scale-dependent shell may be solved numerically. Scale-dependent shell modeling has been provided based upon strain gradient elasticity. Solving the equations will give the shell deflection as a function of load speed. Also, it is reported that shell deflection relies on the porosity dispersion and strain gradient influences.

Active noise control in the global region of a duct using smart foam and FIR filter optimization of cancellation Path (스마트 폼을 이용한 덕트 내 넓은 영역에서의 소음 제어 및 상쇄 경로 최적화)

  • 한제헌;강연준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.525-529
    • /
    • 2002
  • ANC technic can overcome the limited performance of passive noise control at the low frequency range. But it has the local quiet control region in general. In this paper, it is discussed that the global noise control in a circular duct using a ring type smart foam and a porous material. LMS algorithm and RLS algorithm are used to find optimal orders of cancellation path. Experiments are performed to compare the efficiency of RLS algorithm with that of LMS algorithm.

  • PDF

The Effect of Pressing Type and Foaming Agent on the Microstructural Characteristic of Al Foam Produced by Powder Compact Processing (가압형태와 발포제가 분말성형 발포법에 의해 제조된 알루미늄 발포체의 미세구조에 미치는 영향)

  • Choi, Ji Woong;Kim, Hye Sung
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.2
    • /
    • pp.60-65
    • /
    • 2021
  • In this study, the effect of pressure type and foaming agent on the microstructural change of Al foam produced by powder compact processing was investigated. Better foaming characteristic is easily obtained from extrusion process with strong plastic deformation and preheating than that by uniaxial pressing with preheating. In current powder compact foaming process using TiH2/MgH2 mixture as a foaming agent, a temperature of 670℃ and addition of 30% MgH2 in TiH2 foaming agent was chosen as the most suitable foaming condition. The aluminum (Al) foams with maximum porosity of around 70%, relatively regular pore size and distribution were successfully produced by means of the powder metallurgy method and extrusion process.

Fabrication, Microstructure and Compression Properties of AZ31 Mg Foams

  • Zhao, Rui;Li, Yuxuan;Jeong, Seung-Reuag;Yue, Xuezheng;Hur, Bo-Young
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.314-319
    • /
    • 2011
  • Melt foaming method is one of cost-effective methods to make metal foam and it has been successfully applied to fabricate Mg foams. In this research, AZ31 Mg alloy ingot was used as a metal matrix, using AlCa granular as thickening agent and $CaCO_3$ powder as foaming agent, AZ31 Mg alloy foams were fabricated by melt-foaming method at different foaming temperatures. The porosity was above 41.2%~73.3%, pore size was between 0.38~1.52 mm, and homogenous pore structures were obtained. Microstructure and mechanical properties of the AZ31 Mg alloy foams were investigated by optical microscopy, SEM and UTM. The results showed that pore structure and pore distribution were much better than those fabricated at lower temperatures. The compression behavior of the AZ31 Mg alloy foam behaved as typical porous materials. As the foaming temperature increased from $660^{\circ}C$ to $750^{\circ}C$, the compressed strength also increased. The AZ31 Mg alloy foam with a foaming temperature of $720^{\circ}C$ had the best energy absorption. The energy absorption value of Mg foam was 15.52 $MJ/m^3$ at a densification strain of 52%. Furthermore, the high energy absorption efficiencies of the AZ31 Mg alloy foam kept at about 0.85 in the plastic plateau region, which indicates that composite foam possess a high energy absorption characteristic, and the Vickers hardness of AZ31 Mg alloy foam decreased as the foaming temperature increased.

Metal Foam Flow Field Effect on PEMFC Performance (금속 폼 유로가 고분자전해질 연료전지 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.442-448
    • /
    • 2021
  • Flow field is an important parameter for polymer electrolyte membrane fuel cell (PEMFC) performance to have an effect on the reactant supply, heat and water diffusion, and contact resistance. In this study, PEMFC performance was investigated using Cu foam flow field at the cathode of 25 cm2 unit cell. Polarization curve and electrochemical impedance spectroscopy were performed at different pressure and relative humidity conditions. The Cu foam showed lower cell performance than that of serpentine type due to its high ohmic resistance, but lower activation and concentration loss due to the even reactant distribution of porous structure. Cu foam has the advantage of effective water transport because of its hydrophobicity. However, it showed low membrane hydration at low humidity condition. The metal foam flow field could improve fuel cell performance with a uniform pressure distribution and effective water management, so future research on the properties of metal foam should be conducted to reduce electrical resistance of bipolar plate.

Effect of Si Contents on Structure and Mechanical Properties of Al-Si Alloy Metallic Foams (Al-Si 합금 발포금속의 조직 및 기계적 특성에 미치는 Si함량의 영향)

  • Kim, Byeong-Gu;Tak, Byeong-Su;Jeong, Seung-Reung;Jeong, Min-Jae;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.30 no.1
    • /
    • pp.22-28
    • /
    • 2010
  • Metal foam is a porous or cellular structure material and representative property is a very high porosity. Foamed materials have very special properties such as sound, vibration, energy and impact absorption capacity. Especially this properties are widely used for safety demands of architecture, auto and aircraft industry. But metal foam need to increased its compression strength and hardness. This study were researched about Al-Si alloy foams with variation amount of Si contents for their fabrication and properties such as porosity, cell structure, microstructure and mechanical properties. The result are that the range of pore size is 2~4 $mm{\phi}$, the high porosity are 88%, high yield strength is 1.8MPa, the strain ratio is 60~70% and vickers hardness is 33.1~50.6.

Effects of Process Parameters on Cell Control of Aluminum Foal Material (알루미늄 발포소재의 성형 공정 인자가 기공제어에 미치는 영향)

  • 전용필;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.163-166
    • /
    • 1997
  • Aluminium foam material is a highly porous material having complicated cellular structure defined by randomly distributed air pores in metallic matrix. this structure gives the aluminium a set of properties which cannot be achieved by any of conventional treatments. The properties of aluminium foam material significantly depend on its porosity, so that a desired profile of properties can be tailored by changing the foam density. Melting method is the one of foaming processes, which the production has long been considered difficult to realize becaues of such problems as the low foamability of molten metal, the varying size of. cellular structures, solidification shrinkage and so on. These problems, however, have gradually been solved by researchers and some manufacturers are now producing foamed aluminum by their own methods. Most of all, the parameters of solving problem in electric furnace were stirring temperature, stirring velocity, foaming temper:iture, and so on. But it has not considered about those in induction heating, foaming velocity and foaming temperature in semi-solid state yet. Therefore, this paper presents the effects on these parameter to control cell size, quantity and distribution.

  • PDF

Heat Flow of Round Jet Impinging Aluminum Foam Mounted on the Heated Plate with Constant Heat Flux (균일한 열유속을 갖는 가열된 평판에 부착된 발포알루미늄에 대한 원형 충돌제트의 열유동 특성)

  • Han, Young-Hee;Lee, Kye-Bock;Lee, Chung-Gu
    • Journal of Energy Engineering
    • /
    • v.18 no.2
    • /
    • pp.108-113
    • /
    • 2009
  • An experimental study of jet impingement on aluminum foam mounted on the surface with constant heat flux is conducted with the presentation of the heat transfer rate measured when jet impinges normally to a flat plate. Effects of pore density, foam thickness and Reynolds number on the heat transfer are analyzed. Experimental results show that the significant enhancement in Nu is obtained when the aluminum foam is mounted on the heated plate and that the increase in the heat transfer due to the porous material insertion is dominated by both the increase in the heat transfer area and the decrease in the momentum flux resulted from the pressure drop.