• Title/Summary/Keyword: porous foam

Search Result 164, Processing Time 0.024 seconds

Effect of Sintering Temperature on the High Temperature Oxidation of Fe-Cr-Al Powder Porous Metal Manufactured by Electrospray Process (정전 분무법을 이용하여 제조된 Fe-Cr-Al 분말 다공체 금속의 고온 산화에 미치는 소결 온도의 영향)

  • Oh, Jae-Sung;Kong, Young-Min;Kim, Byoung-Kee;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.19 no.6
    • /
    • pp.435-441
    • /
    • 2012
  • A new manufacturing process of Fe-Cr-Al powder porous metal was attempted. First, ultra-fine fecralloy powders were produced by using the submerged electric wire explosion process. Evenly distributed colloid (0.05~0.5% powders) was dispersed on PU (Polyurethane) foam through the electrospray process. And then degreasing and sintering processes were conduced. In order to examine the effect of sintering temperature in process, pre-samples were sintered for two hours at temperatures of $1350^{\circ}C$, $1400^{\circ}C$, $1450^{\circ}C$, and $1500^{\circ}C$, respectively, in $H_2$ atmospheres. A 24-hour TGA (thermo gravimetric analysis) test was conducted at $1000^{\circ}C$ in a 79% $N_2$+21% $O_2$ to investigate the high temperature oxidation behavior of powder porous metal. The results of the high temperature oxidation tests showed that oxidation resistance increased with increasing sintering temperature (2.57% oxidation weight gain at $1500^{\circ}C$ sintered specimen). The high temperature oxidation mechanism of newly manufactured Fe-Cr-Al powder porous metal was also discussed.

A Study on Pore Properties of SUS316L Powder Porous Metal Fabricated by Electrostatic Powder Coating Process (정전분체코팅 공정으로 제조된 SUS316L 분말 다공체의 기공 특성에 관한 연구)

  • Lee, Min-Jeong;Yi, Yu-Jeong;Kim, Hyeon-Ju;Park, Manho;Kim, Byoung-Kee;Yun, Jung-Yeul
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.415-419
    • /
    • 2018
  • Porous metals demonstrate not only excessively low densities, but also novel physical, thermal, mechanical, electrical, and acoustic properties. Thus, porous metals exhibit exceptional performance, which are useful for diesel particulate filters, heat exchangers, and noise absorbers. In this study, SUS316L foam with 90% porosity and $3,000{\mu}m$ pore size is successfully manufactured using the electrostatic powder coating (ESPC) process. The mean size of SUS316L powders is approximately $12.33{\mu}m$. The pore properties are evaluated using SEM and Archimedes. As the quantity of powder coating increases, pore size decreases from 2,881 to $1,356{\mu}m$. Moreover, the strut thickness and apparent density increase from 423.7 to $898.3{\mu}m$ and from 0.278 to $0.840g/cm^3$, respectively. It demonstrates that pore properties of SUS316L powder porous metal are controllable by template type and quantity of powder coating.

A study on the mechanical performance of impregnated polymer foam in cargo leakage of LNG carrier (LNG운반선의 화물 누출 시 함침된 고분자 폼의 기계적 성능에 관한 연구)

  • Park, Gi-Beom;Kim, Tae-Wook;Kim, Seul-Kee;Lee, Jae-Myung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.345-352
    • /
    • 2017
  • In this study, the effect of cryogenic liquefied natural gas leakage and loading on liquefied natural gas cargo hold is investigated to observe the performance of the polymer foam material that comprises the cryogenic insulation of the cargo hold. The primary barriers of liquefied natural gas carrier that are in contact with the liquefied natural gas will leak if damage is accumulated, owing to fluid impact loads or liquefied natural gas loading / unloading over a long period. The leakage of the cryogenic fluid affects the interior of the polymer foam, which is a porous closed cell structure, and causes a change in behavior with respect to the working load. In this study, mechanical properties of polyisocyanurate foam specimen, which is a polymer material used as insulation, are evaluated. The performance of the specimens, owing to the cold brittleness and the impregnation effects of the cryogenic fluids, are quantitatively compared and analyzed.

Preparation of Co3O4/NF Anode for Lithium-ion Batteries

  • Tian, Shiyi;Li, Botao;Zhang, Bochao;Wang, Yang;Yang, Xu;Ye, Han;Xia, Zhijie;Zheng, Guoxu
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.384-391
    • /
    • 2020
  • Due to its characteristics of light weight, high energy density, good safety, long service life, no memory effect, and environmental friendliness, lithium-ion batteries (LIBs) are widely used in various portable electronic products. The capacity and performance of LIBs largely depend on the performance of electrode materials. Therefore, the development of better positive and negative materials is the focus of current research. The application of metal organic framework materials (MOFs) derivatives in energy storage has attracted much attention and research. Using MOFs as precursors, porous metal oxides and porous carbon materials with controllable structure can be obtained. In this paper, rod-shaped Co-MOF-74 was grown on Ni Foam (NF) by hydrothermal method, and then Co-MOF-74/NF precursor was heat-treated to obtain rodshaped Co3O4/NF. Ni Foam was skeleton structured, which effectively relieved. The change of internal stress changes and destroys the structural volume of the electrode material and reduces the capacity attenuation. Co3O4/NF composite material has a specific discharge capacity of up to 1858 mA h/g for the first time, and a reversible capacity of up to 902.4 mA h/g at a current density of 200 mA/g, and has excellent rate and impedance performance. The synthesis strategy reported in this article opens the way to design high-performance electrodes for energy storage and electrochemical catalysis.

Effect of Flow Direction on Temperature Uniformity in Solid Oxide Fuel Cell (고체산화물 연료전지의 유동방향에 따른 온도 균일성 영향)

  • Jeon, Dong Hyup;Shin, Dong-Ryul;Ryu, Kwang-Hyun;Song, Rak-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.667-673
    • /
    • 2017
  • We investigated the temperature uniformity in an anode-supported solid oxide fuel cell, using the open source computational fluid dynamics (CFD) toolbox, OpenFOAM. Numerical simulation was performed in three different flow paths, i.e., co-flow, counter-flow, and cross-flow paths. Gas flow in a porous electrode was calculated using effective diffusivity while considering the effect of interconnect rib. A lumped internal resistance model derived from a semi-empirical correlation was implemented for the calculation of electrochemical reaction. The result showed that the counter-flow path displayed the most uniform temperature distribution.

The Determination of Diffusion and Partition Coefficients of PUF (폴리우레탄 폼의 휘발성 유기화합물 확산 및 분배계수 산정)

  • Park, Jin-Soo;Little, John C.;Kim, Shin-Do;Lee, Hee-Kwan;Kong, Boo-Ju
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.1
    • /
    • pp.77-84
    • /
    • 2010
  • The diffusion and partition coefficients of polyurethane foam (PUF) are estimated using a microbalance experiment and small chamber test. The microbalance is used to measure sorption/desorption kinetics and equilibrium data. When the diffusion condition is controlled in the chamber of the sample, interactions between volatile organic compounds (VOCs) and PUF can lead to the estimation of a relatively homogenous rate of mass transfer in the interiors and surfaces of PUF. The estimates of the material/air partition coefficient (K) and the material-phase diffusion coefficient (D) are shown to be independent of the concentrations of VOCs. This approach, if applied to a diffusion-controlled or physically-based model, can facilitate more precise prediction of their source/sink behavior. Although further research and more rigorous validation is needed, an emission model applied with the diffusion and partition coefficients from this research holds promise for the improvement of reliability in predicting the behavior of VOCs emitted from porous building materials by D and K.

Effect of Rubber on Microcellular Structures from High Internal Phase Emulsion Polymerization

  • Park, Ji-Sun;Chun, Byoung-Chul;Lee, Seong-Jae
    • Macromolecular Research
    • /
    • v.11 no.2
    • /
    • pp.104-109
    • /
    • 2003
  • A microcellular, which combines a rubber with the conventional formulation of styrene/divinylbenzene/sorbitan monooleate/water system, was prepared using high internal phase emulsion (HIPE) polymerization. Although the open microcellular foam with low density from the conventional HIPE polymerization shows highly porous characteristics with fine, regular and isotropic structure, the one having much smaller cell size is desirable for various applications. In this study, a polybutadiene was introduced to reduce the cell size with comparable properties. Major interests were focused on the effects of rubber concentration and agitation speed on the cell sizes and compression properties. Scanning electron microscopy was used to observe the microcellular morphology and compression tests were conducted to evaluate the stress-strain behaviors. It was found that the cell size decreased as rubber concentration increased, reflecting a competition between the higher viscosity of continuous phase and the lower viscosity ratio of dispersed to continuous phases due to the addition of high molecular weight rubber into the oil phase of emulsion. A correlation for the average cell size depending on agitation speed was attempted and the result was quite satisfactory.

Reduction of floating Dross in the Zinc Bath (도금욕 부유드로스의 감소)

  • Chang, Seky
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1999.05a
    • /
    • pp.97-97
    • /
    • 1999
  • Dross formation in the zinc bath is inevitable under any condition as long as coating process on steel strip continues. Thus, bath aluminum and temperature are precisely managed to suppress the increase of dross. Also, excessive dross for normal coating process is generally eliminated physically by bubbling and skimming. Total amount of dross in the bath can be sometimes high enough to cause coating defect. On the other hand, local concentration of dross can make coating defect even with satisfactory level of total amount of dross. Reduction of dross in the bath was attempted by using ceramic foam filter made of mainly alumina. Dross in molten zinc was almost reduced to the levels of solubility of iron and aluminum in molten zinc at $450~460^{\circ}C$. Their solubility levels were confirmed by thermodynamic calculations or DEAL program. Two kinds of filters were tested for dross reduction. One was #20 ppi, porous per inch, and the other #30 ppi filter. Both were effective in reducing the bath dross to the solubility levels at the static state. Bath iron was reduced by 24 wt% and 19 wt% with #20 filter, and by 35 wt% and 29 wt% with #30 filter for GI and GA pot, respectively. Also, ceramic foam filter did not make any harm to the zinc bath composition after filtering test.

  • PDF

Steam reforming of methane in a solar receiver reactor (SiC foam에 코팅된 상용 촉매에서의 집광된 태양열을 이용한 메탄 수증기개질 반응 연구)

  • Kim, Ki-Man;Han, Gui-Young;Seo, Tae-Beom;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.1
    • /
    • pp.75-81
    • /
    • 2007
  • Steam reforming of methane using Xe-arc solar simulator was studied for the application of concentrated solar energy into chemical reaction. The reactor, a volumetric absorber, consisted of a porous ceramic foam disk coated with commercial reforming catalyst. Operating temperature was in the range of $450\;-\;550^{\circ}C$ and the excess steam ratio to methane was from 3.0 to 5.0. At the steady-state condition, the conversion of methane Increased with temperature in the range of 15 % - 30 % and the experimentally determined conversion was found to be close to theoretical equilibrium conversion. It was also found that the CO selectivity slightly decreased with excess steam ratio. Finally, the conversion of methane decreased significantly with space velocity of reactants.

High-valence Mo doping for promoted water splitting of Ni layered double hydroxide microcrystals

  • Kyoungwon Cho;Seungwon Jeong;Je Hong Park;Si Beom Yu;Byeong Jun Kim;Jeong Ho Ryu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.2
    • /
    • pp.78-82
    • /
    • 2023
  • The oxygen evolution reaction (OER) is the primary challenge in renewable energy storage technologies, specifically electrochemical water splitting for hydrogen generation. We report effects of Mo doping into Ni layered double hydroxide (Ni-LDH) microcrystal on electrocatalytic activities. In this study, Mo doped Ni-LDH were grown on three-dimensional porous nicekl foam (NF) by a facile solvothermal method. Homogeneous LDH structure on the NF was clearly observed. However, the surface microstructure of the nickel foam began to be irregular and collapsed when Mo precursor is doped. Electrocatalytic OER properties were analyzed by Linear sweep voltammetry (LSV) and Electrochemical impedance spectroscopy (EIS). The amount of Mo doping used in the electrocatalytic reaction was found to play a crucial role in improving catalytic activity. The optimum Mo amount introduced into the Ni LDH was discussed with respect to their OER performance.