• Title/Summary/Keyword: porous Media

Search Result 592, Processing Time 0.033 seconds

Nitrogen Removal Comparison in Porous Ceramic Media Packed-Bed Reactors by a Consecutive Nitrification and Denitrification Process

  • Han, Gee-Bong;Woo, Mi-Hee
    • Environmental Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.231-236
    • /
    • 2011
  • Biological nitrogen removal, using a continuous flow packed-bed reactor (CPBR) in a consecutive nitrification and denitrification process, was evaluated. An apparent decline in the nitrification efficiency coincided with the steady increase in $NH_4{^+}$-N load. Sustained nitrification efficiency was found to be higher at longer empty bed contact times (EBCTs). The relationship between the rate of alkalinity consumption and $NH_4{^+}$-N utilization ratio followed zero-order reaction kinetics. The heterotrophic denitrification rate at a carbon-tonitrogen (C/N) ratio of >4 was found to be >74%. This rate was higher by a factor of 8.5 or 8.9 for $NO_3{^-}$-N/volatile solids (VS)/day or $NO_3{^-}-N/m^3$ ceramic media/day, respectively, relative to the rates measured at a C/N ratio of 1.1. Autotrophic denitrification efficiencies were 80-90%. It corresponds to an average denitrification rate of 0.96 kg $NO_3{^-}-N/m^3$ ceramic media/day and a relevant average denitrification rate of 0.28 g $NO_3{^-}$-N/g VS/day, were also obtained. Results presented here also constitute the usability of an innovative porous sulfur ceramic media. This enhanced the dissolution rate of elemental sulfur via a higher contact surface area.

Development and Performance Evaluation of Positively Charged Porous Filter media for Water Purification System (정수 설비를 위한 양전하가 부가된 다공성 수처리 필터 개발과 성능평가)

  • Lee, Chang-Gun;Joo, Ho-Young;Lee, Jae-Keun;Ahn, Young-Chull;Park, Seong-En
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.95-98
    • /
    • 2006
  • Filtration by fibrous filter is one of the Principle methods used for removing pollutant particles in the liquid. Because of the increasing need to protect both human health and valuable devices from exposure to fine particles, filtration has become more important. Filters have been developed with modified surface charge characteristics to capture and adsorb particles by electrokinetic interaction between the filter surface and particles contained in water. The main purposes of this study are to develop and evaluate the performance evaluation of the apparatus for making a positively charged porous filter media and to analyze the surface characteristics of the filter media for capturing negavitely charged contaminants mainly bacteria and virus from water. The experimental apparatus consists of a mixing tank, a vacuum pumping system, a injection nozzle, a roller press and a controller. The filter media is composed of glass fiber(50-750 nm), cellulose($10-20{\mu}m$) and colloidal charge modifier. The characteristics of filter media is analyzed by SEM(Scanning Electron Microscopy), AFM(Atomic Force Microscopy) and quantified by measuring the zeta potential values.

  • PDF

Numerical Analysis of Wasted Heat Recovery Ventilator for Improving the Heat Exchange Efficiency (폐열회수 환기장치의 열교환 효율 개선을 위한 전산수치해석)

  • Kim, Hyun-Il;Kim, Jae-Sung;Park, Chul-Woo;Park, Kyung-Seo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.1
    • /
    • pp.54-61
    • /
    • 2012
  • In this paper, we performed numerical analysis to improve the heat exchange efficiency of wasted heat recovery ventilator which has a delivery and a exhaustion fan. One of the most important design factors that affect the efficiency of heat exchange is uniform counter-flow between inbound and outbound air flows. We had simulated several types of porous plates which were installed at air intake area. With plate having 45 degrees of installation angle and 15 mm diameter holes which are uniformly arranged, we can generate a uniform air flows at the area of porous media where inbound and outbound air flows are cross over. In addition, we installed a duct to reduce vortex flows at the outlet and to discharge exhaust airs rapidly. By using the proposed numerical assessment, we expect the improvement of the heat exchange efficiency of ventilator.

Simulations of premixed combustion in porous media (다공판 내의 예혼합연소 특성 해석)

  • Shin, Youngjun;Lee, Jeongwon;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.253-255
    • /
    • 2012
  • This study has numerically investigated the combustion processes in the bilayer porous media. To account for the velocity transition and diffusion influenced by solid matrix, porosity effects are included in the governing equations. Heat transfer coefficient is calculated by Nusselt number to reflect the effect of gas velocity, pore diameter, and material properties. Numerical results indicate that the present approach is capable of the essential features of the premixed combustion in the porous burner, in terms of the precised flame structure, pollutant formation, and flame stabilization. It is also found that heat transferred from the downstream flame zone is conducted to the upstream flame region through the solid matrix and the preheated mixture. By increasing the inlet velocity, the solid temperature of upstream is cooling down.

  • PDF

Heat and Mass Transfer in Highly Porous Media (고 다공성 물질에서 열 및 물질전달)

  • 이금배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.685-693
    • /
    • 1990
  • The heat transfer coefficients were calculated numerically to see the effects of radiation around the porous medium put on the flat plate at a distance from the leading edge of flat plate for the two-dimensional laminar flows. To verify the analytical model developed and invoke the heat/mass transfer analogy, an experiment was carried out using naphthalene sublimation technique. From the effects of the wake, Sherwood number is maximum around the region where the porous medium is attached. The theoretical results correspond well with the experimental results at small Darcy number. Permeability of ceramic blocks used for experiment was also measured and the Forchheimer equation is applicable in our measurement range.

A study on thermo-elastic interactions in 2D porous media with-without energy dissipation

  • Alzahrani, Faris;Abbas, Ibrahim A.
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.523-531
    • /
    • 2021
  • The generalized thermoelastic analysis problem of a two-dimension porous medium with and without energy dissipation are obtained in the context of Green-Naghdi's (GNIII) model. The exact solutions are presented to obtain the studying fields due to the pulse heat flux that decay exponentially in the surface of porous media. By using Laplace and Fourier transform with the eigenvalues scheme, the physical quantities are analytically presented. The surface is shocked by thermal (pulse heat flux problems) and applying the traction free on its outer surfaces (mechanical boundary) through transport (diffusion) process of temperature to observe the analytical complete expression of the main physical fields. The change in volume fraction field, the variations of the displacement components, temperature and the components of stress are graphically presented. Suitable discussion and conclusions are presented.

Wind Turbine Wake Model by Porous Disk CFD Model (다공 원반 CFD 모델을 이용한 풍력발전기 후류 해석 연구)

  • Shin, Hyungki;Jang, Moonseok;Bang, Hyungjun;Kim, Soohyun
    • Journal of Wind Energy
    • /
    • v.4 no.1
    • /
    • pp.68-74
    • /
    • 2013
  • Offshore wind farm is being increased since there are much trouble to develop onshore wind farm. But in the offshore, wind turbine wake does not dissipate less than onshore wind turbine because of low turbulence level. Thus this remained wake interacted to other wind turbine. This interaction reduces energy production in wind farm and have a bad influence on fatigue load of wind turbine. In this research, CFD model was constructed to analyze wake effect in offshore wind farm. A method that wind turbine rotor region was modelled in porous media was devised to reduce computation load and validated by comparison with Horns Rev measurement. Then wake interaction between two wind turbine was analyzed by devised porous model.

Treatment of Waste Air Containing Malodor and VOC: 1. Effect of Photocatalyst-carrying Media Porosity on the Photocatalytic Removal Efficiency of Malodor and VOC of Waste Air (악취 및 VOC를 함유한 폐가스의 광촉매 처리: 1. 처리효율에 대한 광촉매담체 다공성의 영향)

  • Lee, Eun Ju;Park, Hyeri;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.945-951
    • /
    • 2012
  • The effect of photocatalyst-carrying media porosity on the photocatalytic removal efficiency of malodor and VOC of waste air was evaluated when the photocatalytic removal efficiency of porous silica-based media was compared with that of glass bead as control. The amount of photocatalyst coated on the surface of porous silica-based media was observed to be $1,716.3{\mu}g/cm^2$, which was 250% as much as that of nonporous glass bead (control) of $670{\mu}g/cm^2$. The removal efficiencies of hydrogen sulfide and toluene in case of porous silica-based media were observed to be 22% and 82%, respectively, while the removal efficiencies of hydrogen sulfide and toluene in case of nonporous glass bead media were observed to be 19% and 53%, respectively. Therefore, the removal efficiencies of hydrogen sulfide and toluene increased by 16% and 55%, respectively, when the removal efficiencies of porous silica-based media were compared with those of nonporous glass bead media. Thus the increment ratio of the removal efficiency of toluene was observed to be 3.4 times higher than that of hydrogen sulfide.

Effective Method for Analysis of Heterogeneous Porous Media (비균질 다공성 매질의 효율적 해석 방법)

  • Park, Chang-Geun
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.4
    • /
    • pp.459-467
    • /
    • 1998
  • The existing methods to analyze the heterogeneous porous media based on the similar media concept are the microscopic Miller similitude(MiS), the macroscopic Miller similitude(MaS) and the Warrick similitude(WS). The inter-relationship is found such that MiS ⊂ MaS ⊂ (⊂:subset). The proposed method is based ont eh assumption that the scale variables $\alpha$=w and the moisture content is dimensionless by introducing the effective degree of saturation instead of the degree of saturation into WS. The method, without the loss of generality in view of the inspectional analysis, can explain the heterogeneity of the media by using the scale variable $\alpha$ only. The media of $\alpha$=1 (average of $\alpha$) means the equivalent media corresponding to the heterogeneous media, while the standard deviation of $\alpha$ may explain the degree of the heterogeneity of the media under consideration. The hydraulic conductivity of the media with $\alpha$>1 is greater than that of the equivalent media, and the effective moisture content of the media with $\alpha$>1 is also greater. Based on these properties of the scale variable $\alpha$, the ideal vertical one-dimensional heterogeneous porous media is generated by using the technique of random number generation.

  • PDF