• 제목/요약/키워드: porous FGMs

검색결과 16건 처리시간 0.02초

Advanced SPS Systems and FGM Technolgy

  • Tokita, Masao
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2000년도 춘계학술강연 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.11-11
    • /
    • 2000
  • Large-size ceramic/metal bulk FGMs have been fabricated on a recently developed and the world's largest Spark Plasma Sintering(SPS) systems, As a part of the development program for practical production processes and machines for FGMs by SPS, the processes, mechanical properties, dimensional size and shape effects, and production machine systems were investigated. In the past, $ZrO_{2}$/TiAI, $ZrO_{2}$/Ni, $Al_{2}O_{3}$/Ti, WC/Co, WC/Co/Steel, A1/P, Polymide, Cu/Polymide, nano-composites, porous and other combinations of bulk FGMs have already been processed using SPS. However, most of the specimen sizes were small, in a range of 20 to 30mm in diameter. Recently disk-shape sintered compacts with diameters of 100 and 150 mm, and thickness of approximately 15 and 17 mm, $ZrO_{2}$(3Y)/ stainless steel FGMs were homogenous consolidated in a shorter sintering time, while maintaining high quality and repeatability by utilizing a temperature gradient sintering method. The SPS heating up and holding time totaled less than one hour. Therefore, the SPS process in expected to find increased use in the fabrication of large-size FGMs as a new industrial processing technology. This paper introduces SPS systems, the processing principles, features and the characteristies of ceramic/metal bulk FGM.

  • PDF

Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory

  • Hadji, Lazreg;Avcar, Mehmet
    • Advances in nano research
    • /
    • 제10권3호
    • /
    • pp.281-293
    • /
    • 2021
  • This paper presents a new nonlocal Hyperbolic Shear Deformation Beam Theory (HSDBT) for the free vibration of porous Functionally Graded (FG) nanobeams. A new displacement field containing integrals is proposed which involves only three variables. The present model incorporates the length scale parameter (nonlocal parameter) which can capture the small scale effect and its account for shear deformation by a hyperbolic variation of all displacements through the thickness without using the shear correction factor. It has been observed that during the manufacture of Functionally Graded Materials (FGMs), micro-voids and porosities can occur inside the material. Thus, in this work, the investigation of the free vibration analysis of FG beams taking into account the influence of these imperfections is established. Four different porosity types are considered for FG nanobeam. Material characteristics of the FG beam are supposed to vary continuously within thickness direction according to a power-law scheme which is modified to approximate material characteristics for considering the influence of porosities. Based on the nonlocal differential constitutive relations of Eringen, the equations of motion of the nanobeam are derived using Hamilton's principle. The effects of nonlocal parameter, aspect ratio, and the porosity types on the dynamic responses of the nanobeam are discussed.

A novel porosity-based homogenization scheme for propagation of waves in axially-excited FG nanobeams

  • Ebrahimi, Farzad;Dabbagh, Ali
    • Advances in nano research
    • /
    • 제7권6호
    • /
    • pp.379-390
    • /
    • 2019
  • Putting emphasis on the effect of existence of porosity in the functionally graded materials (FGMs) on the dynamic responses of waves scattered in FG nanobeams resulted in implementation of a novel porosity-based homogenization method for FGMs and show its applicability in a wave propagation problem in the presence of axial pre-load for the first time. In the employed porosity-dependent method, the coupling between density and Young's moduli is included to consider for the effective moduli of the FG nanobeam by the means of a more reliable homogenization technique. The beam-type element will be modeled via the classical theory of beams, namely Euler-Bernoulli beam theory. Also, the dynamic form of the principle of virtual work will be extended for such nanobeams to derive the motion equations. Applying the nonlocal constitutive equations of Eringen on the obtained motion equations will be resulted in derivation of the nanobeam's governing equations. Depicted results reveal that the dispersion responses of FG nanobeams will be decreased as the porosity volume fraction is increased which must be noticed by the designers of advanced nanosize devices who are interested in employment of wave dispersion approach in continuous systems for specific goals.

Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Nia, Alireza Farrokhi;Badnava, Salman;Hamouda, A.M.S.
    • Advances in nano research
    • /
    • 제8권2호
    • /
    • pp.149-156
    • /
    • 2020
  • The present paper explores forced vibrational properties of porosity-dependent functionally graded (FG) cylindrical nanoshells exposed to linear-type or triangular-type impulse load via classical shell theory (CST) and nonlocal strain gradient theory (NSGT). Employing such scale-dependent theory, two scale factors accounting for stiffness softening and hardening effects are incorporated in modeling of the nanoshell. Two sorts of porosity distributions called even and uneven have been taken into account. Governing equations obtained for porous nanoshell have been solved through inverse Laplace transforms technique to derive dynamical deflections. It is shown that transient responses of a nanoshell are affected by the form and position of impulse loading, amount of porosities, porosities dispensation, nonlocal and strain gradient factors.

Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers

  • Karami, Behrouz;Shahsavari, Davood
    • Smart Structures and Systems
    • /
    • 제23권3호
    • /
    • pp.215-225
    • /
    • 2019
  • In the present paper, the nonlocal strain gradient refined model is used to study the thermal stability of sandwich nanoplates integrated with piezoelectric layers for the first time. The influence of Kerr elastic foundation is also studied. The present model incorporates two small-scale coefficients to examine the size-dependent thermal stability response. Elastic properties of nanoplate made of functionally graded materials (FGMs) are supposed to vary through the thickness direction and are estimated employing a modified power-law rule in which the porosity with even type of distribution is approximated. The governing differential equations of embedded sandwich piezoelectric porous nanoplates under hygrothermal loading are derived through Hamilton's principle where the Galerkin method is applied to solve the stability problem of the nanoplates with simply-supported edges. It is indicated that the thermal stability characteristics of the porous nanoplates are obviously influenced by the porosity volume fraction and material variation, nonlocal parameter, strain gradient parameter, geometry of the nanoplate, external voltage, temperature and humidity variations, and elastic foundation parameters.

Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme

  • Ebrahimi, Farzad;Dabbagh, Ali;Rabczuk, Timon;Tornabene, Francesco
    • Advances in nano research
    • /
    • 제7권2호
    • /
    • pp.135-143
    • /
    • 2019
  • The important effect of porosity on the mechanical behaviors of a continua makes it necessary to account for such an effect while analyzing a structure. motivated by this fact, a new two-step porosity dependent homogenization scheme is presented in this article to investigate the wave propagation responses of functionally graded (FG) porous nanobeams. In the introduced homogenization method, which is a modified form of the power-law model, the effects of porosity distributions are considered. Based on Hamilton's principle, the Navier equations are developed using the Euler-Bernoulli beam model. Thereafter, the constitutive equations are obtained employing the nonlocal elasticity theory of Eringen. Next, the governing equations are solved in order to reach the wave frequency. Once the validity of presented methodology is proved, a set of parametric studies are adapted to put emphasis on the role of each variant on the wave dispersion behaviors of porous FG nanobeams.

Nonlinear bending of functionally graded porous nanobeam subjected to multiple physical load based on nonlocal strain gradient theory

  • Gao, Yang;Xiao, Wan-shen;Zhu, Haiping
    • Steel and Composite Structures
    • /
    • 제31권5호
    • /
    • pp.469-488
    • /
    • 2019
  • We in this paper study nonlinear bending of a functionally graded porous nanobeam subjected to multiple physical load based on the nonlocal strain gradient theory. For more reasonable analysis of nanobeams made of porous functionally graded magneto-thermo-electro-elastic materials (PFGMTEEMs), both constituent materials and the porosity appear gradient distribution in the present expression of effective material properties, which is much more suitable to the actual compared with the conventional expression of effective material properties. Besides the displacement function regarding physical neutral surface is introduced to analyze mechanical behaviors of beams made of FGMs. Then we derive nonlinear governing equations of PFGMTEEMs beams using the principle of Hamilton. To obtain analytical solutions, a two-step perturbation method is developed in nonuniform electric field and magnetic field, and then we use it to solve nonlinear equations. Finally, the analytical solutions are utilized to perform a parametric analysis, where the effect of various physical parameters on static bending deformation of nanobeams are studied in detail, such as the nonlocal parameter, strain gradient parameter, the ratio of nonlocal parameter to strain gradient parameter, porosity volume fraction, material volume fraction index, temperature, initial magnetic potentials and external electric potentials.

Dynamic response of size-dependent porous functionally graded beams under thermal and moving load using a numerical approach

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.;Hani, Fatima Masood
    • Structural Monitoring and Maintenance
    • /
    • 제7권2호
    • /
    • pp.69-84
    • /
    • 2020
  • Based on differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT), forced vibrations of a porous functionally graded (FG) scale-dependent beam in thermal environments have been investigated in this study. The nanobeam is assumed to be in contact with a moving point load. NSGT contains nonlocal stress field impacts together with the microstructure-dependent strains gradient impacts. The nano-size beam is constructed by functionally graded materials (FGMs) containing even and un-even pore dispersions within the material texture. The gradual material characteristics based upon pore effects have been characterized using refined power-law functions. Dynamical deflections of the nano-size beam have been calculated using DQM and Laplace transform technique. The prominence of temperature rise, nonlocal factor, strain gradient factor, travelling load speed, pore factor/distribution and elastic substrate on forced vibrational behaviors of nano-size beams have been explored.

Vibration analysis of nonlocal porous nanobeams made of functionally graded material

  • Berghouti, Hana;Adda Bedia, E.A.;Benkhedda, Amina;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • 제7권5호
    • /
    • pp.351-364
    • /
    • 2019
  • In this work, dynamic behavior of functionally graded (FG) porous nano-beams is studied based on nonlocal nth-order shear deformation theory which takes into the effect of shear deformation without considering shear correction factors. It has been observed that during the manufacture of "functionally graded materials" (FGMs), micro-voids and porosities can occur inside the material. Thus, in this work, the investigation of the dynamic analysis of FG beams taking into account the influence of these imperfections is established. Material characteristics of the FG beam are supposed to be vary continuously within thickness direction according to a "power-law scheme" which is modified to approximate material characteristics for considering the influence of porosities. A comparative study with the known results in the literature confirms the accuracy and efficiency of the current nonlocal nth-order shear deformation theory.

Nonlocal strain gradient-based vibration analysis of embedded curved porous piezoelectric nano-beams in thermal environment

  • Ebrahimi, Farzad;Daman, Mohsen;Jafari, Ali
    • Smart Structures and Systems
    • /
    • 제20권6호
    • /
    • pp.709-728
    • /
    • 2017
  • This disquisition proposes a nonlocal strain gradient beam theory for thermo-mechanical dynamic characteristics of embedded smart shear deformable curved piezoelectric nanobeams made of porous electro-elastic functionally graded materials by using an analytical method. Electro-elastic properties of embedded curved porous FG nanobeam are assumed to be temperature-dependent and vary through the thickness direction of beam according to the power-law which is modified to approximate material properties for even distributions of porosities. It is perceived that during manufacturing of functionally graded materials (FGMs) porosities and micro-voids can be occurred inside the material. Since variation of pores along the thickness direction influences the mechanical and physical properties, so in this study thermo-mechanical vibration analysis of curve FG piezoelectric nanobeam by considering the effect of these imperfections is performed. Nonlocal strain gradient elasticity theory is utilized to consider the size effects in which the stress for not only the nonlocal stress field but also the strain gradients stress field. The governing equations and related boundary condition of embedded smart curved porous FG nanobeam subjected to thermal and electric field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is utilized to achieve the natural frequencies of porous FG curved piezoelectric nanobeam resting on Winkler and Pasternak foundation. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality parameter, electric voltage, coefficient of porosity, elastic foundation parameters, thermal effect, gradient index, strain gradient, elastic opening angle and slenderness ratio on the natural frequency of embedded curved FG porous piezoelectric nanobeam are successfully discussed. It is concluded that these parameters play important roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.