• Title/Summary/Keyword: porous FG

Search Result 136, Processing Time 0.029 seconds

Size-dependent magneto-electro-elastic vibration analysis of FG saturated porous annular/ circular micro sandwich plates embedded with nano-composite face sheets subjected to multi-physical pre loads

  • Amir, Saeed;Arshid, Ehsan;Arani, Mohammad Reza Ghorbanpour
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.429-447
    • /
    • 2019
  • The present study analyzed free vibration of the three-layered micro annular/circular plate which its core and face sheets are made of saturated porous materials and FG-CNTRCs, respectively. The structure is subjected to magneto-electric fields and magneto-electro-mechanical pre loads. Mechanical properties of the porous core and also FG-CNTRC face sheets are varied through the thickness direction. Using dynamic Hamilton's principle, the motion equations based on MCS and FSD theories are derived and solved via GDQ as an efficient numerical method. Effect of different parameters such as pores distributions, porosity coefficient, pores compressibility, CNTs distribution, elastic foundation, multi-physical pre loads, small scale parameter and aspect ratio of the plate are investigated. The findings of this study can be useful for designing smart structures such as sensor and actuator.

Nonlinear static analysis of functionally graded porous beams under thermal effect

  • Akbas, Seref D.
    • Coupled systems mechanics
    • /
    • v.6 no.4
    • /
    • pp.399-415
    • /
    • 2017
  • This paper deals with the nonlinear static deflections of functionally graded (FG) porous under thermal effect. Material properties vary in both position-dependent and temperature-dependent. The considered nonlinear problem is solved by using Total Lagrangian finite element method within two-dimensional (2-D) continuum model in the Newton-Raphson iteration method. In numerical examples, the effects of material distribution, porosity parameters, temperature rising on the nonlinear large deflections of FG beams are presented and discussed with porosity effects. Also, the effects of the different porosity models on the FG beams are investigated in temperature rising.

Impact of porosity distribution on static behavior of functionally graded plates using a simple quasi-3D HSDT

  • Farouk Yahia Addou;Fouad Bourada;Mustapha Meradjah;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mofareh Hassan Ghazwani;Ali Alnujaie
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.87-97
    • /
    • 2023
  • The bending of a porous FG plate is discussed in this study using a novel higher quasi-3D hyperbolic shear deformation theory with four unknowns. The proposed theory takes into consideration the normal and transverse shear deformation effect and ensures the parabolic distribution of the transverse stresses through the thickness direction with zero-traction at the top and the bottom surfaces of the structure. Innovative porous functionally graded materials (FGM) have through-thickness porosity as a unique attribute that gradually varies with their qualities. An analytical solution of the static response of the perfect and imperfect FG plate was derived based on the virtual work principle and solved using Navier's procedure. The validity and the efficiency of the current model is confirmed by comparing the results with those obtained by others solutions. The comparisons showed that the present model is very efficient and simple in terms of computation time and exactness. The impact of the porosity parameter, aspect ratio, and thickness ratio on the bending of porous FG plate is shown through a discussion of several numerical results.

Nonlinear primary resonance of multilayer FG shallow shell with an FG porous core reinforced by oblique stiffeners

  • Kamran Foroutan;Liming Dai
    • Structural Engineering and Mechanics
    • /
    • v.91 no.5
    • /
    • pp.503-516
    • /
    • 2024
  • The present research examines the primary resonance (PR) behaviors of oblique stiffened multilayer functionally graded (OSMFG) shallow shells featuring an FG porous (FGP) core under an external excitation. The research considers two distinct types of FGP cores: one characterized by uniform porosity distribution (UPD) and the other by non-uniform porosity distribution (NPD) along the thickness direction. Furthermore, the study explores two types of shallow shells: one with external oblique stiffeners and one with internal oblique stiffeners, which might have angles that are similar or different from each other. Using the stress function alongside the first-order shear deformation theory (FSDT), the research establishes a nonlinear model for OSMFG shallow shells. The strain-displacement relationships are obtained utilizing FSDT and von-Kármán's geometric assumptions. The Galerkin approach is utilized to discretize the nonlinear governing equations, allowing for the analysis of stiffeners at varied angles. To validate the obtained results, a comparison is made not only with the findings of previous research but also with the response of PR obtained theoretically with the method of multiple scales, using the P-T method. Renowned for its superior accuracy and reliability, the P-T method is deemed an apt selection within this framework. Additionally, the study investigates how differences in material characteristics and stiffener angles affect the system's PR behaviors. The results of this study can be used as standards by engineers and researchers working in this area, and they can offer important information for the design and evaluation of the shell systems under consideration.

Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams

  • Mirjavadi, Seyed Sajad;Afshari, Behzad Mohasel;Shafiei, Navvab;Hamouda, A.M.S.;Kazemi, Mohammad
    • Steel and Composite Structures
    • /
    • v.25 no.4
    • /
    • pp.415-426
    • /
    • 2017
  • The thermo-mechanical vibration behavior of two dimensional functionally graded (2D-FG) porous nanobeam is reported in this paper. The material properties of the nanobeam are variable along thickness and length of the nanobeam according to the power law function. The nanobeam is modeled within the framework of Timoshenko beam theory. Eringen's nonlocal elasticity theory is used to develop the governing equations. Using the generalized differential quadrature method (GDQM) the governing equations are solved. The effect of porosity, temperature distribution, nonlocal value, L/h, FG power indexes along thickness and length and are investigated using parametric studies.

Mechanical-hygro-thermal vibrations of functionally graded porous plates with nonlocal and strain gradient effects

  • Fenjan, Raad M.;Hamad, Luay Badr;Faleh, Nadhim M.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.2
    • /
    • pp.169-186
    • /
    • 2020
  • Based upon differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT), mechanical-hygro-thermal vibrational analyzes of shear deformable porous functionally graded (FG) nanoplate on visco-elastic medium has been performed. The presented formulation incorporates two scale factors for examining vibrational behaviors of nano-dimension plates more accurately. The material properties for FG plate are porosity-dependent and defined employing a modified power-law form. It is supposed that the nano-size plate is exposed to hygro-thermal and variable compressive mechanical loadings. The governing equations achieved by Hamilton's principle are solved implementing DQM. Presented results indicate the prominence of moisture/temperature variation, damping factor, material gradient index, nonlocal coefficient, strain gradient coefficient and porosities on vibrational frequencies of FG nano-size plate.

Combination resonance analysis of FG porous cylindrical shell under two-term excitation

  • Ahmadi, Habib;Foroutan, Kamran
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.253-264
    • /
    • 2019
  • This paper presents the combination resonances of FG porous (FGP) cylindrical shell under two-term excitation. The effect of structural damping on the system response is also considered. With regard to classical plate theory of shells, von-$K{\acute{a}}rm{\acute{a}}n$ equation and Hook law, the relations of stress-strain is derived for shell. According to the Galerkin method, the discretized motion equation is obtained. The combination resonances are obtained by using the method of multiple scales. Four types of FGP distributions consist of uniform porosity, non-symmetric porosity soft, non-symmetric porosity stiff and symmetric porosity distribution are considered. The influence of various porosity distributions, porosity coefficients of cylindrical shell and amplitude excitations on the combination resonances for FGP cylindrical shells is investigated.

Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory

  • Atmane, Redhwane Ait;Mahmoudi, Noureddine;Bennai, Riadh;Atmane, Hassen Ait;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.39 no.1
    • /
    • pp.95-107
    • /
    • 2021
  • In this work, the dynamic response of functionally graded beams on variable elastic foundations is studied using a novel higher-order shear deformation theory (HSDT). Unlike the conventional HSDT, the present one has a new displacement field which introduces undetermined integral variables. The FG beams were assumed to be supported on Winkler-Pasternak type foundations in which the Winkler modulus is supposed to be variable in the length of the beam. The variable rigidity of the elastic foundation is assumed to be linear, parabolic and sinusoidal along the length of the beam. The material properties of the FG porous beam vary according to a power law distribution in terms of the volume fraction of the constituents. The equations of motion are determined using the virtual working principle. For the analytical solution, Navier method is used to solve the governing equations for simply supported porous FG beams. Numerical results of the present theory for the free vibration of FG beams resting on elastic foundations are presented and compared to existing solutions in the literature. A parametric study will be detailed to investigate the effects of several parameters such as gradient index, thickness ratio, porosity factor and foundation parameters on the frequency response of porous FG beams.

Vibration analysis of nonlocal strain gradient porous FG composite plates coupled by visco-elastic foundation based on DQM

  • Abdulrazzaq, Mohammed Abdulraoof;Muhammad, Ahmed K.;Kadhim, Zeyad D.;Faleh, Nadhim M.
    • Coupled systems mechanics
    • /
    • v.9 no.3
    • /
    • pp.201-217
    • /
    • 2020
  • This paper employs differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT) for studying free vibrational characteristics of porous functionally graded (FG) nanoplates coupled by visco-elastic foundation. A secant function based refined plate theory is used for mathematical modeling of the nano-size plate. Two scale factors are included in the formulation for describing size influences based on NSGT. The material properties for FG plate are porosity-dependent and defined employing a modified power-law form. Visco-elastic foundation is presented based on three factors including a viscous layer and two elastic layers.The governing equations achieved by Hamilton's principle are solved implementing DQM. The nanoplate vibration is shown to be affected by porosity, temperature rise,scale factors and viscous damping.

Dispersion of waves in FG porous nanoscale plates based on NSGT in thermal environment

  • Ebrahimi, Farzad;Seyfi, Ali;Dabbagh, Ali
    • Advances in nano research
    • /
    • v.7 no.5
    • /
    • pp.325-335
    • /
    • 2019
  • In the present study, nonlocal strain gradient theory (NSGT) is developed for wave propagation of functionally graded (FG) nanoscale plate in the thermal environment by considering the porosity effect. $Si_3N_4$ as ceramic phase and SUS304 as metal phase are regarded to be constitutive material of FG nanoplate. The porosity effect is taken into account on the basis of the newly extended method which considers coupling influence between Young's modulus and mass density. The motion relation is derived by applying Hamilton's principle. NSGT is implemented in order to account for small size effect. Wave frequency and phase velocity are obtained by solving the problem via an analytical method. The effects of different parameters such as porosity coefficient, gradient index, wave number, scale factor and temperature change on phase velocity and wave frequency of FG porous nanoplate have been examined and been presented in a group of illustrations.