• Title/Summary/Keyword: porous $Al_2O_3$

Search Result 190, Processing Time 0.027 seconds

Thermal Shock Behavior of Porous Nozzles with Various Pore Sizes for Continuous Casting Process

  • Kim, Ju-Young;Yoon, Sang-Hyeon;Kim, Yoon-Ho;Lee, Hee-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.617-620
    • /
    • 2011
  • Thermal shock behavior of porous ceramic nozzles with various pore sizes for continuous casting process of steel was investigated in terms of physical properties and microstucture. Porous nozzle samples with a composition of $Al_2O_3$-$SiO_2$-$ZrO_2$ were fabricatedby adding various sizes of graphite as the pore forming agent. As the graphite size increased from 45~75 to 150~180 ${\mu}m$, both the resulting pore size and the flexural strength also increased. A thermal shock test was carried out at temperatures (${\Delta}$T) of 600, 700, 800, and 900$^{\circ}C$. Microstructure analysis revealed a small number of cracks on the sample with the largest mean pore size of 22.32 ${\mu}m$. In addition, increasing the pore size led to a smaller decrease in both pressure drop and elastic modulus. In conclusion, controlling the pore size can enhance thermal shock behavior.

Surface Strengthening of 3Y-TZP Ceramics by Boehmite Sol Infiltration (Boehmite Sol 함침에 의한 3Y-TZP 소결체의 표면 강화)

  • Choi, Ki-Sik;Kim, Young-Jung;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.6
    • /
    • pp.671-677
    • /
    • 1994
  • To improve the low resistance of ceramics to tensile stress, many techniques, for introducing and retaining surface compressive stress have been suggested. In present work, in order to introduce the compressive stress on the surface of TZP ceramics TZP-Al2O3 composites were made with infiltration technique. Highly porous 3Y-TZP pre-sintered specimens were submerged in AlOOH(boehmite) sol and the sol penetrated into them through open pore channels with moderate depth after that specimens were sintered. It was known that controlling the number of infiltration time can vary the amount of Al2O3 phase and the fraction of alumina at surface reached up to 18%. The depth of composite surface layer were 100~200 ${\mu}{\textrm}{m}$, and these were acceptable in surface strengthening which were proved by Vickers hardness indentation method.

  • PDF

Tailored Powder Composites by Freeze Drying, Electrophoretic Deposition and Sintering

  • Olevsky, Eugene A.;Wang, Xuan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.287-288
    • /
    • 2006
  • Two approaches for the fabrication of tailored powder composites with specially distributed pore-grain structure and chemical composition are investigated. Electrophoretic Deposition (EPD) followed by microwave sintering is employed to obtain functionally graded materials (FGM) by in-situ controlling the deposition bath suspension composition. $Al_2O_3/ZrO_2$ and zeolite FGM are successfully synthesized using this technique. In order to fabricate an aligned porous structure, unidirectional freezing followed by freeze drying and sintering is employed. By controlling the temperature gradient during freezing of powder slurry, a unidirectional ice-ceramic structure is obtained. The frozen specimen is then subjected to freeze drying to sublimate the ice. The obtained capillary-porous ceramic specimen is consolidated by sintering. The sintering of the graded structure is modeled by the continuum theory of sintering.

  • PDF

A Study of Nanoscale Structure of Anodic Porous Alumina film (다공성 알루미나 박막의 나노 스케일 구조에 관한 연구)

  • 정경한;신훈규;권영수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.801-806
    • /
    • 2003
  • In recent years, there has been large interest in the fabrication of the self organized nanoscale structures since not only their potential utilization in electronic, optoelectronic, and magnetic devices but also their fundamental interest such as uniformity and regularization. An attractive candidate of these materials is anodic porous alumina film(Al$_2$O$_3$) which is formed by the anodization of aluminum in an appropriate acid solution. In this study to fabricate the porous alumina film with very uniform and nearly parallel pores the anodization was carried out under constant voltage mode in 0.3M oxalic acid as an electrolyte. The hexagonally ordered arrays with a few $\mu\textrm{m}$ in size two-dimensional polycrystalline structure were obtained of which pore densities were 1.1${\times}$10$\^$10//$\textrm{cm}^2$.

Plasma-assisted Catalysis for the Abatement of Isopropyl Alcohol over Metal Oxides (금속산화물 촉매상에서 플라즈마를 이용한 IPA 저감)

  • Jo, Jin Oh;Lee, Sang Baek;Jang, Dong Lyong;Park, Jong-Ho;Mok, Young Sun
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.375-382
    • /
    • 2014
  • This work investigated the plasma-catalytic decomposition of isopropyl alcohol (IPA) and the behavior of the byproduct compounds over monolith-supported metal oxide catalysts. Iron oxide ($Fe_2O_3$) or copper oxide (CuO) was loaded on a monolithic porous ${\alpha}-Al_2O_3$ support, which was placed inside the coaxial electrodes of plasma reactor. The IPA decomposition efficiency itself hardly depended on the presence and type of metal oxides because the rate of plasma-induced decomposition was so fast, but the behavior of byproduct formation was largely affected by them. The concentrations of the unwanted byproducts, including acetone, formaldehyde, acetaldehyde, methane, carbon monoxide, etc., were in order of $Fe_2O_3/{\alpha}-Al_2O_3$ < $CuO/{\alpha}-Al_2O_3$ < ${\alpha}-Al_2O_3$ from low to high. Under the condition (flow rate: $1L\;min^{-1}$; IPA concentration: 5,000 ppm; $O_2$ content: 10%; discharge power: 47 W), the selectivity towards $CO_2$ was about 40, 80 and 95% for ${\alpha}-Al_2O_3$, $CuO/{\alpha}-Al_2O_3$ and $Fe_2O_3/{\alpha}-Al_2O_3$, respectively, indicating that $Fe_2O_3/{\alpha}-Al_2O_3$ is the most effective for plasma-catalytic oxidation of IPA. Unlike plasma-alone processes in which tar-like products formed from volatile organic compounds are deposited, the present plasma-catalyst hybrid system did not exhibit such a phenomenon, thus retaining the original catalytic activity.

Fabrication of Porous Alumina Ceramics Using Hollow Microspheres as the Pore-forming Agent

  • Nie, Zhengwei;Lin, Yuyi
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.368-373
    • /
    • 2015
  • Porous alumina ceramics with two different pore sizes were fabricated using hollow microspheres as the pore-forming agent. The relative density, total porosity, and microstructure of the obtained alumina ceramics were studied. It was found that the total porosity of sintered samples with different amounts of hollow microsphere content, from 2.0 to 4.0 wt%, was 69.3-75.6%. The interconnected and spherical cell morphology was obtained with 3.0 wt% hollow microsphere content. The resulting ceramics consist of a hierarchical structure with large-sized cells, and small-sized pores in the cell walls. Moreover, the compressive strength of the sintered samples varied from 8.3-11.5 MPa, corresponding to hollow microsphere contents of 2.0-4.0 wt%.

The Strength Characteristics of CO2-reducing Cement Mortar using Porous Feldspar and Graphene Oxide (다공성 장석 및 산화그래핀을 적용한 탄소저감형 시멘트 모르타르 강도특성)

  • Lee, Jong-Young;Han, Jung-Geun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.1-7
    • /
    • 2021
  • In response to the carbon emission reduction trends and the depletion of natural sand caused by the use of cement in construction works, graphene oxide and porous feldspar were applied as countermeasures in this study. By using (3-aminopropyl)trimethoxysilane-functionalized graphene oxide with enhanced bond characteristics, a concrete specimen was prepared with 5% less cement content than that in a standard mortar mix, and the compressive strengths of the specimens were examined. The compressive strengths of the specimen with (3-aminopropyl)trimethoxysilane-functionalized graphene oxide and porous feldspar and the specimen with standard mixing were 26MPa and 28MPa, respectively, showing only a small difference. In addition, both specimens met the compressive strength of cement mortar required for geotechnical structures. It is believed that a reasonable level of compressive strength was maintained in spite of the lower cement content because the high content of pozzolans, namely SiO2 and Al2O3, in the porous feldspar enhanced the reactions with Ca(OH)2 during hydration, the nano-sized graphene surface acted as a reactive surface for the hydration products to react actively, and the strong covalent bonding of the carboxyl functional group increased the bonding strength of the hydration products.

Structure and Properties of EN AC AlSi12 Alloy Reinforced by Ceramic Fibre and Particles

  • Dobrzanki, Leszek A.;Kremzer, Marek
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1078-1079
    • /
    • 2006
  • The paper presents the possibilities of obtaining new composite materials based on sintered porous ceramics with particles and fibre of $Al_2O_3$ infiltrated by aluminum alloy. The EN AC - AlSi12 alloy features the matrix material, whereas the RF50AX-301 preform, of Saffil Automotive, was used as the reinforcement. Examinations of ceramics preforms permeability were made. Metallographic examination of composite materials made on light microscope and in scanning electron microscope show that aluminum alloys fill micropores in the matrix. New composite materials show twice higher value of hardness in comparison with matrix. Results indicate that it is possible to infiltrate porous ceramic with liquid aluminum alloy to obtain new composite materials were advantageous properties of each component are connected.

  • PDF

Corrosion of Carbon Steel with and without Aluminized Coating in (O, S, H)-containing Gases at 500-800℃

  • Lee, Dong Bok;Abro, Waheed Ali;Lee, Kun Sang;Abro, Muhammad Ali
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.2
    • /
    • pp.85-90
    • /
    • 2017
  • The carbon steel formed the thick, somewhat porous, loosely adherent iron oxide scale when oxidized at $500-800^{\circ}C$ for 15 h in air. It formed the thicker, more porous, nonadherent scale consisting of FeS plus iron oxides in $Ar/1%SO_2$-mixed gas. It formed the much thicker, more porous, nonadherent scale consisting of FeS plus iron oxides in Ar/0.1% $H_2S$-mixed gas. However, the aluminized carbon steel formed the thin, protective $Al_2O_3$ surface scale even in $Ar/1%SO_2$-, and $Ar/0.1%H_2S$-mixed gas. Aluminizing drastically improved the corrosion resistance in (O, S, H)-containing gas.