• Title/Summary/Keyword: porous $Al_2O_3$

Search Result 190, Processing Time 0.025 seconds

Preparation of Porous $Al_2O_3$-AIN-Mullite and $Al_2O_3$-AIN-SiC

  • Kim, Byung-Hoon;Na, Yong-Han
    • The Korean Journal of Ceramics
    • /
    • v.1 no.3
    • /
    • pp.147-151
    • /
    • 1995
  • Porous composite of $Al_2O_3$ and AIN based mullite and SiC can be prepared by alumium reaction synthesis and atmosphere controllied sintering in order to improve the durability of a gas filter body. The porous $Al_2O_3$-AIN-mullite, which has a strength of 168 kg/$\textrm{cm}^2$ and porosity of 51.59%, could be obtained by stmospheric firing at $1600^{\circ}C$ and the porous $Al_2O_3$-AIN-SiC with a porosity of 33% and strength of 977 kg/$\textrm{cm}^2$, could also be prepared. The average pore size has been changed from 0.2$\mu\textrm{m}$ in a reduction atmosphere and to 2$\mu\textrm{m}$ in an air atmosphere, respectively.

  • PDF

Fabrication and Properties of Bioactive Porous Ceramics for Bone Substitution (뼈 대체용 생체활성 다공질 세라믹스의 제조 및 특성)

  • Lee, Lak-Hyoung;Ha, Jung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.10
    • /
    • pp.584-588
    • /
    • 2008
  • Porous hydroxyapatite(HA) and HA-coated porous $Al_2O_3$ possessing pore characteristics required for bone substitutes were prepared by a slurry foaming method combined with gelcasting. The HA coating was deposited by heating porous $Al_2O_3$ substrates in an aqueous solution containing $Ca^{2+}$ and ${PO_4}^{3-}$ ions at $65{\sim}95^{\circ}C$ under ambient pressure. The pore characteristic, microstructure, and compressive strength were investigated and compared for the two kinds of samples. The porosity of the samples was about 81% and 80% for HA and $Al_2O_3$, respectively with a highly interconnected network of spherical pores with size ranging from 50 to $250{\mu}m$. The porous $Al_2O_3$ sample showed much higher compressive strength(25 MPa) than the porous HA sample(10 MPa). Fairly dense and uniform HA coating(about $2{\mu}m$ thick) was deposited on the porous $Al_2O_3$ sample. Since the compressive strength of cancellous bone is $2{\sim}12$ MPa, both the porous HA and HA-coated porous $Al_2O_3$ samples could be successfully utilized as scaffolds for bone repair. Especially the latter is expected suitable for load bearing bone substitutes due to its excellent strength.

Fabrication of Porous Al2O3-(m-ZrO2) Composites and Al2O3-(m-ZrO2)/PMMA Hybrid Composites by Infiltration Process

  • Lee, Byong-Taek;Quang, Do Van;Song, Ho-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.6 s.301
    • /
    • pp.291-296
    • /
    • 2007
  • Porous $Al_2O_3-(m-ZrO_2)$ composites were fabricated by pressureless sintering, using different volume percentages (40% - 60%) of poly methyl methacrylate (PMMA) powders as a pore-forming agent. The pore-forming agent was successfully removed, and the pore size and shape were well-controlled during the burn-out and sintering processes. The average pore size in the porous $Al_2O_3-(m-ZrO_2)$ bodies was about $200\;{\mu}m$ in diameter. The values of relative density, bending strength, hardness, and elastic modulus decreased as the PMMA content increased; i.e., in the porous body (sintered at $1500^{\circ}C$) using 55 vol % PMMA, their values were about 50.8%, 29.8 MPa, 266.4 Hv, and 6.4 GPa, respectively. To make the $Al_2O_3-(m-ZrO_2)$/polymer hybrid composites, a bioactive polymer, such as PMMA, was infiltrated into the porous $Al_2O_3-(m-ZrO_2)$ composites. After infiltration, most of the pores in the porous $Al_2O_3-(m-ZrO_2)$ composites, which were made using 60 vol % PMMA additions, were infiltrated with PMMA, and their values of relative density, bending strength, hardness, and elastic modulus remarkably increased.

Enhancement of Porosity and Strength of Porous Al2O3 Ceramics by Al(H2PO4)3 Addition

  • Bai, Jiahai;Piao, Jiasi;Gao, Jie;He, Jing;Du, Qingyang;Li, Chengfeng
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.4
    • /
    • pp.350-353
    • /
    • 2019
  • Porous alumina ceramics with addition of 0, 5, 10, 15, and 20 wt% Al(H2PO4)3 were sintered at 1300, 1350, and 1400℃. The effects of the Al(H2PO4)3 addition on crystal phases, water absorption, open porosity, pore size distribution, microstructures, and flexural strength were studied extensively. The experimental results revealed that only characteristic peaks of corundum were indexed in the XRD patterns of the as-prepared porous ceramics. The water absorption and open porosity of the porous Al2O3 ceramics increased remarkably with an increase in Al(H2PO4)3 addition. The flexural strength first increased to a maximum value when 5 wt% Al(H2PO4)3 was added and then decreased as additional Al(H2PO4)3 was further added. SEM images showed that the average Al2O3 grain size in the porous ceramics changed in an opposite way as the flexural strength. The porous Al2O3 ceramics with 10 wt% Al(H2PO4)3 addition exhibited comparable flexural strength to the ceramics without Al(H2PO4)3 addition, although the latter had much higher porosity.

Nano-porous $Al_2O_3$ used as a protecting layer of AC Plasma Display Panel

  • Park, Sung-Yun;Hong, Sang-Min;Shin, Bhum-Jae;Cho, Jin-Hoon;Kim, Seong-Su;Park, Sung-Jin;Lee, Kyu-Wang;Choi, Kyung-Cheol
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.359-361
    • /
    • 2003
  • Nano-porous alumina was investigated as a protecting layer in an AC Plasma Display Panel. A 2 ${\mu}m$ thick nano-porous $Al_2O_3$ layer inserted with MgO was formed on the dielectric layer instead of the conventional 500 nm-thick MgO thin film. Both nano-porous $Al_2O_3$layer and inserted MgO were prepared by wet process. The luminance and luminous efficiency of 3-inch test panel adopting nano-porous $Al_2O_3$ was higher than that of the conventional PDP.

  • PDF

Preparation of $ZrO_2/Al_2O_3-Mullite$ Composites Using the Silica Sol Infiltration Method (실리카 졸 침투법을 이용한 $ZrO_2/Al_2O_3-Mullite$ 복합체의 제조)

  • 현상훈;최지영
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.9
    • /
    • pp.719-728
    • /
    • 1992
  • ZrO2/Al2O3-Mullite composites were prepared by infiltration of the silica sol to the porous ZrO2/Al2O3 bodies. The porous ZrO2/Al2O3 bodies for infiltration were fabricated using ZrO2 (20wt%)/Al2O3 composite powders synthesized by the emulsion-hot kerosene drying method. The preparation of silica sols was conducted by the hydrolysis-peptization of an alcoholic TEOS solution. When ZrO2/Al2O3-Mullite and ZrO2/Al2O3 composites were sintered at 1$650^{\circ}C$ for 4 hrs, both of them showed an excellent sinterability. As the amount of mullite added in the composites increased, the ratio of the tetragonal phase of zirconia to the monoclinic phase at the room temperature became higher. It was known that values of the fracture toughness of the ZrO2/Al2O3-Mullite composites were about 5.48 MPa.m1/2 much larger than that of the ZrO2/Al2O3 system.

  • PDF

Synthesis and Microstructure of Porous Al2O3 with Nano-Sized Cu Dispersions (나노크기 Cu 분산입자를 갖는 Al2O3 다공체의 제조 및 미세조직 특성)

  • Yoo, Ho-Suk;Kim, An-Gi;Hyun, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.67-71
    • /
    • 2013
  • Porous $Al_2O_3$ dispersed with nano-sized Cu was fabricated by freeze-drying process and solution chemistry method using Cu-nitrate. To prepare porous $Al_2O_3$, camphene was used as the sublimable vehicle. Camphene slurries with $Al_2O_3$ content of 10 vol% were prepared by milling at $50^{\circ}C$ with a small amount of oligomeric polyester dispersant. Freezing of the slurry was done in a Teflon cylinder attached to a copper bottom plate cooled to $-25^{\circ}C$ while unidirectionally controlling the growth direction of the camphene. Pores were subsequently generated by sublimation of the camphene during drying in air for 48 h. The green body was sintered in a furnace at $1400^{\circ}C$ for 1 h. Cu particles were dispersed in porous $Al_2O_3$ by calcination and hydrogen reduction of Cu-nitrate. The sintered samples showed large pores with sizes of about $150{\mu}m$; these pores were aligned parallel to the camphene growth direction. Also, the internal walls of the large pores had relatively small pores due to the traces of camphene left between the concentrated $Al_2O_3$ particles on the internal wall. EDS analysis revealed that the Cu particles were mainly dispersed on the surfaces of the large pores. These results strongly suggest that porous $Al_2O_3$ with Cu dispersion can be successfully fabricated by freeze-drying and solution chemistry routes.

Influence of Ionic Liquid as a Template on Preparation of Porous η-Al2O3 to DME Synthesis from Methanol

  • Yoo, Kye-Sang;Lee, Se-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1628-1632
    • /
    • 2010
  • Porous ${\eta}-Al_2O_3$ was synthesized by modified sol-gel method using ionic liquid as a templating material. The addition of ionic liquid assisted to increase the surface area of alumina. However, the acidity of aluminas prepared with ionic liquids was hardly affected regardless the change of its structural properties. Among the ionic liquids used in this study, 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][$PF_6$]) was the most effective ionic liquid to produce porous ${\eta}-Al_2O_3$ particles. The catalytic performance of these aluminas has been investigated in dehydration of methanol to produce dimethyl ether. The alumina prepared with [Bmim][$PF_6$] outperformed the other aluminas except ${\eta}-Al_2O_3$ without modification in this reaction.

Fabrication of Al2O3 Dispersed Porous Cu by Freeze Drying of CuO-Al2O3/Camphene Slurry (CuO-Al2O3/camphene 슬러리의 동결건조 공정에 의한 Al2O3 입자분산 Cu 다공체 제조)

  • Kang, Hyunji;Riu, Doh-Hyung;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.25-29
    • /
    • 2018
  • Porous Cu with a dispersion of nanoscale $Al_2O_3$ particles is fabricated by freeze-drying $CuO-Al_2O_3$/camphene slurry and sintering. Camphene slurries with $CuO-Al_2O_3$ contents of 5 and 10 vol% are unidirectionally frozen at $-30^{\circ}C$, and pores are generated in the frozen specimens by camphene sublimation during air drying. The green bodies are sintered for 1 h at $700^{\circ}C$ and $800^{\circ}C$ in $H_2$ atmosphere. The sintered samples show large pores of $100{\mu}m$ in average size aligned parallel to the camphene growth direction. The internal walls of the large pores feature relatively small pores of ${\sim}10{\mu}m$ in size. The size of the large pores decreases with increasing $CuO-Al_2O_3$ content by the changing degree of powder rearrangement in the slurry. The size of the small pores decreases with increasing sintering temperature. Microstructural analysis reveals that 100-nm $Al_2O_3$ particles are homogeneously dispersed in the Cu matrix. These results suggest that a porous composite body with aligned large pores could be fabricated by a freeze-drying and $H_2$ reducing process.

Infiltration of the Cu-Ti Alloys to Porous $Al_2O_3$ Ceramic Coating (Cu-Ti합금의 침투에 의한 $Al_2O_3$ 세라믹 용사층의 복합화)

  • 이형근;김대훈;황선효
    • Journal of Welding and Joining
    • /
    • v.10 no.4
    • /
    • pp.213-221
    • /
    • 1992
  • Al$_{2}$O$_{3}$ ceramic coating layer by gas flame spraying was very porous, therefore it could not have wear and corrosion resistance at all. To get a dense and strong coating layer, a method to infiltrate an alloy into the pores of $Al_{2}$O$_{3}$ ceramic coating was investigated. Cu-Ti alloys, which had good wettability and reactivity with $Al_{2}$O$_{3}$ ceramic, were examined for infiltration. Infiltration of the alloys was performed in vacuum at 1100.deg.C. The melt of Cu-50 at % Ti alloy was well penetrated through the porous $Al_{2}$O$_{3}$ coating and tightly sealed the pores, unbounded area and microcracks in the coating. The alloy melt in the pores reacted with $Al_{2}$O$_{3}$ ceramic to produce a suboxide phase, Cu$_{2}$Ti$_{4}$O. This composite layer which was composed of $Al_{2}$O$_{3}$ and Cu$_{2}$Ti$_{4}$O phase had good microstructure and wear and corrosion resistance. Additionally, microstructures at interfaces between coating layers were greatly improved owing to the effect of vacuum heat treating.

  • PDF