• Title/Summary/Keyword: poroelastic

Search Result 46, Processing Time 0.026 seconds

Dynamic analyses for an axially-loaded pile in a transverse-isotropic, fluid-filled, poro-visco-elastic soil underlain by rigid base

  • Zhang, Shiping;Zhang, Junhui;Zeng, Ling;Yu, Cheng;Zheng, Yun
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.53-63
    • /
    • 2022
  • Simplified analytical solutions are developed for the dynamic analyses of an axially loaded pile foundation embedded in a transverse-isotropic, fluid-filled, poro-visco-elastic soil with rigid substratum. The pile is modeled as a viscoelastic Rayleigh-Love rod, while the surrounding soil is regarded as a transversely isotropic, liquid-saturated, viscoelastic, porous medium of which the mechanical behavior is represented by the Boer's poroelastic media model and the fractional derivative model. Upon the separation of variables, the frequency-domain responses for the impedance function of the pile top, and the vertical displacement and the axial force along the pile shaft are gained. Then by virtue of the convolution theorem and the inverse Fourier transform, the time-domain velocity response of the pile head is derived. The presented solutions are validated, compared to the existing solution, the finite element model (FEM) results, and the field test data. Parametric analyses are made to show the effect of the soil anisotropy and the excitation frequency on the pile-soil dynamic responses.

A poroelastic model for ultrasonic wave attenuation in partially frozen brines (부분 동결된 소금물에서의 초음파감쇠에 대한 다공성탄성 모델)

  • Matsushima, Jun;Nibe, Takao;Suzuki, Makoto;Kato, Yoshibumi;Rokugawa, Shuichi
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.105-115
    • /
    • 2011
  • Although there are many possible mechanisms for the intrinsic seismic attenuation in composite materials that include fluids, relative motion between solids and fluids during seismic wave propagation is one of the most important attenuation mechanisms. In our previous study, we conducted ultrasonic wave transmission measurements on an ice-brine coexisting system to examine the influence on ultrasonic waves of the unfrozen brine in the pore microstructure of ice. In order to elucidate the physical mechanism responsible for ultrasonic wave attenuation in the frequency range of 350.600 kHz, measured at different temperatures in partially frozen brines, we employed a poroelastic model based on the Biot theory to describe the propagation of ultrasonic waves through partially frozen brines. By assuming that the solid phase is ice and the liquid phase is the unfrozen brine, fluid properties measured by a pulsed nuclear magnetic resonance technique were used to calculate porosities at different temperatures. The computed intrinsic attenuation at 500 kHz cannot completely predict the measured attenuation results from the experimental study in an ice-brine coexisting system, which suggests that other attenuation mechanisms such as the squirt-flow mechanism and wave scattering effect should be taken into account.

A fully coupled thermo-poroelastoplasticity analysis of wellbore stability

  • Zhu, Xiaohua;Liu, Weiji;Zheng, Hualin
    • Geomechanics and Engineering
    • /
    • v.10 no.4
    • /
    • pp.437-454
    • /
    • 2016
  • Wellbore instability problem is one of the main problems that met frequently during drilling, particularly in high temperature, high pressure (HPHT) formations. There are large amount of researches about wellbore stability in HPHT formations, which based on the thermo-poroelastic theory and some achievements were obtained; however, few studies have investigated on the fully coupled thermo-poroelastoplasticity analysis of wellbore stability, especially the analysis of wellbore stability while the filter cake formed. Therefore, it is very necessary to do some work. In this paper, the three-dimensional wellbore stability model which overall considering the effects of fully coupled thermo-poroelastoplasticity and filter cake is established based on the finite element method and Drucker-Prager failure criterion. The distribution of pore pressure, wellbore stress and plastic deformation under the conditions of different mud pressures, times and temperatures have been discussed. The results obtained in this paper can offer a great help on understanding the distribution of pore pressure and wellbore stress of wellbore in the HPHT formation for drilling engineers.

Free vibration of functionally graded thin beams made of saturated porous materials

  • Galeban, M.R.;Mojahedin, A.;Taghavi, Y.;Jabbari, M.
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.999-1016
    • /
    • 2016
  • This study presents free vibration of beam made of porous material. The mechanical properties of the beam is variable in the thickness direction and the beam is investigated in three situations: poro/nonlinear nonsymmetric distribution, poro/nonlinear symmetric distribution, and poro/monotonous distribution. First, the governing equations of porous beam are derived using principle of virtual work based on Euler-Bernoulli theory. Then, the effect of pores compressibility on natural frequencies of the beam is studied by considering clamped-clamped, clamped-free and hinged-hinged boundary conditions. Moreover, the results are compared with homogeneous beam with the same boundary conditions. Finally, the effects of poroelastic parameters such as pores compressibility, coefficients of porosity and mass on natural frequencies has been considered separately and simultaneously.

Influence with Pressure of the Bone Fluid in Inclination of Osteon

  • Yoon, Young-June;Chung, Jae-Pil
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.4
    • /
    • pp.10-15
    • /
    • 2010
  • Cortical bone is composed of an osteon, which is a subunit of the cortical bone. At the center of the osteon, Haversian is located and it consists of blood vessels and nerves. Osteon is known to be inclined 5 to 15 degrees with respect to the long axis of a cortical bone, but the reason why it is inclined is not clear. Using the poroelastic calculation provides the pore pressure varies at the lacunar-canalicular network from -200KPa to 200KPa. This estimation is close to the result shown in the previous literature and it helps further cell culture experiment for elucidating the bone remodeling process.

  • PDF

Poroelastic vibrations of FG Porous higher-order shear deformable

  • Jing Li;Fei Tang;Yasser Alashker;Farhan Alhosny
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.503-516
    • /
    • 2023
  • In the current examination, a trigonometric shear deformation theory is hired to govern natural frequencies of a functionally graded porous microplate which is covered by two nanocomposite layers. The properties of the structure are varied based on the specified patterns. Utilizing the modified form of couple stress theory for taking the scale effect into account in conjunction with Hamilton's principle, the motion equations are obtained. Then, they are solved via Fourier series functions as an analytical approach. After confirming the results' accuracy, various parameters' effect on the results is investigated. Designing and manufacturing more efficient structures, especially those that are subjected to multi-physical loads can be accounted as findings of this work.

Coupled T-H-M Processes Calculations in KENTEX Facility Used for Validation Test of a HLW Disposal System (고준위 방사성 폐기물 처분 시스템 실증 실험용 KENTEX 장치에서의 열-수리-역학 연동현상 해석)

  • Park Jeong-Hwa;Lee Jae-Owan;Kwon Sang-Ki;Cho Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.117-131
    • /
    • 2006
  • A coupled T-H-M(Thermo-Hydro-Mechanical) analysis was carried out for KENTEX (KAERI Engineering-scale T-H-M Experiment for Engineered Barrier System), which is a facility for validating the coupled T-H-M behavior in the engineered barrier system of the Korean reference HLW(high-level waste) disposal system. The changes of temperature, water saturation, and stress were estimated based on the coupled T-H-M analysis, and the influence of the types of mechanical constitutive material laws was investigated by using elastic model, poroelastic model, and poroelastic-plastic model. The analysis was done using ABAQUS, which is a commercial finite element code for general purposes. From the analysis, it was observed that the temperature in the bentonite increased sharply for a couple of days after heating the heater and then slowly increased to a constant value. The temperatures at all locations were nearly at a steady state after about 37.5 days. In the steady state, the temperature was maintained at $90^{\circ}C$ at the interface between the heater and the bentonite and at about $70^{\circ}C$ at the interface between the bentonite and the confining cylinder. The variation of the water saturation with time in bentonite was almost same independent of the material laws used in the coupled T-H-M processes. By comparing the saturation change of T-H-M and that of H-M(Hydro-Mechanical) processes using elastic and poroelastic material mod31 respectively, it was found that the degree of saturation near the heater from T-H-M calculation was higher than that from the coupled H-M calculation mainly because of the thermal flux, which seemed to speed up the saturation. The stresses in three cases with different material laws were increased with time. By comparing the stress change in H-M calculation using poroelasetic and poroelasetic-plastic model, it was possible to conclude that the influence of saturation on the stress change is higher than the influence of temperature. It is, therefore, recommended to use a material law, which can model the elastic-plastic behavior of buffer, since the coupled T-H-M processes in buffer is affected by the variation of void ratio, thermal expansion, as well as swelling pressure.

  • PDF

FEM vibroacoustic analysis in the cabin of a regional turboprop aircraft

  • Cinefra, Maria;Passabi, Sebastiano;Carrera, Erasmo
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.4
    • /
    • pp.477-498
    • /
    • 2018
  • The main goal of this article is to validate a methodological process in Actran MSC Software, that is based on the Finite Element Method, to evaluate the comfort in the cabin of a regional aircraft and to study the noise and vibrations reduction through the fuselage by the use of innovative materials. In the preliminary work phase, the CAD model of a fuselage section was created representing the typical features and dimensions of an airplane for regional flights. Subsequently, this model has been imported in Actran and the Sound Pressure Level (SPL) inside the cabin has been analyzed; moreover, the noise reduction through the fuselage has been evaluated. An important investigation and data collection has been carried out for the study of the aircraft cabin to make it as close as possible to a real problem, both in geometry and in materials. The mesh of the structure has been built from the CAD model and has been simplified in order to reduce the number of degrees of freedom. Finally, different fuselage configurations in terms of materials are compared: in particular, aluminum, composite and sandwich material with composite skins and poroelastic core are considered.

Torsional waves in fluid saturated porous layer clamped between two anisotropic media

  • Gupta, Shishir;Kundu, Santimoy;Pati, Prasenjit;Ahmed, Mostaid
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.645-657
    • /
    • 2018
  • The paper aims to analyze the behaviour of torsional type surface waves propagating through fluid saturated inhomogeneous porous media clamped between two inhomogeneous anisotropic media. We considered three types of inhomogeneities in upper anisotropic layer which varies exponentially, quadratically and hyperbolically with depth. The anisotropic half space inhomogeneity varies linearly with depth and intermediate layer is taken as inhomogeneous fluid saturated porous media with sinusoidal variation. Following Biot, the dispersion equation has been derived in a closed form which contains Whittaker's function and its derivative, for approximate result that have been expanded asymptotically up to second term. Possible particular cases have been established which are in perfect agreement with standard results and observe that when one of the upper layer vanishes and other layer is homogeneous isotropic over a homogeneous half space, the velocity of torsional type surface waves coincides with that of classical Love type wave. Comparative study has been made to identify the effects of various dimensionless parameters viz. inhomogeneity parameters, anisotropy parameters, porosity parameter, and initial stress parameters on the torsional wave propagation by means of graphs using MATLAB. The study has its own relevance in connection with the propagation of seismic waves in the earth where fluid saturated poroelastic layer is present.

Analysis of Thermo Chemically Decomposing Composites for Rocket Thermal Insulators (로켓 방화벽용 열경화성 복합재의 거동해석)

  • Lee, Sunpyo;Lee, Jung-Youn
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.4
    • /
    • pp.1-11
    • /
    • 2001
  • A theory for time-dependent, high temperature ablation of poroelastic carbon composite insulators is applied using finite element methods to determine material properties from experimental data. The theory contains important revisions to that in Lee, Salamon and Sullivan[1] by making a sharp distinction between Biots constants and permeability and setting both to analytical functions of porosity. The finite element program and material modeling has been modified to (1) more closely adhere to porous-material theory, (2) include a newly discovered analytical simplification and (3) refine the material property descriptions. Application to experimental problems and comparisons with data permit determination of Biots constants and permeability and their evolution with respect to matrix decomposition and clearly show how material parameters affect the material response, e.g., amplitude and the location of peaks with respect to temperature. In particular, the response is very sensitive to permeability and dominated by it.

  • PDF