• Title/Summary/Keyword: pores structure

Search Result 521, Processing Time 0.026 seconds

THE EFFECT OF $CO_2$ LASER IRRADIATION ON ENAMEL SURFACE AND THE BOND STRENGTH OF SEALANT MATERIAL (탄산가스 레이저 조사가 법랑질 표면구조와 치면열구 전색재의 결합강도에 미치는 효과)

  • Yun, Dong-Sik;Kim, Yong-Kee;Kim, Jong-Soo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.4
    • /
    • pp.761-771
    • /
    • 1998
  • In this study, attempt has been made to evaluate the effect of $CO_2$ laser irradiation on enamel surface structure and the bond strength of sealant material. Conventional acid etching was used as a control technic for comparison. The results obtained from this experiment were as follows; 1. The highest mean shear bond strength value was observed in samples of Group I (acid-etching) with the statistical significance(p<.05) between all the other groups. 2. The shear bond strength in Group IV was the lowest among laser etching groups. but there were no significant difference between them(p>.05). 3. Scanning electron microscopic observation showed that the rough and irregular surface was created by $CO_2$ laser treatment with the formation of numerous pores, micro-cracks, and small bubble-like inclusion. Increasing the energy density induced localized surface melt with a thin smooth glaze-like appearance. 4. In acid-etched control specimen cohesive failure predominated, whereas adhesive failure was the main mode in laser-treated group. Based upon the above-mentioned results, it can be assumed that the $CO_2$ laser is not an adequate substitute for the acid-etch technique in enamel preconditioning. More studies are required to explore the effective condition of laser irradiation which could attain the better bond strength of restorative materials.

  • PDF

Effect of Salinity on Mechanical Characteristics of Stabilized Dredged Soil (고화준설토의 역학적 특성에 대한 염분의 영향)

  • Kim, Yun-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.9
    • /
    • pp.47-53
    • /
    • 2011
  • Marine dredged soils taken from navigation channels or construction sites of coastal area usually have a lot of salt in pores of clayey soils. This paper investigates effect of salt on mechanical characteristics of non-salt and salt-rich stabilized dredged soil. The stabilized dredged soil (SDS) consisted of dredged soil and cement. Several pairs of SDS with non-salt and salt-rich dredged soils, noted as N-SDS and S-SDS, respectively, were prepared to compare their strengths and compressibility characteristics. The microstructures, strength and compressibility characteristics of N-SDS and S-SDS specimens at 7 and 28 days of curing time were evaluated using scanning electronic microscope (SEM), unconfined compression test, and oedometer test. It was found that salt concentration of clayey soil affected not only the formation of soil structure but also the strength development of mixture. The compression index and swelling index of S-SDS were also greater than those of N-SDS, which indicated that the compressibility of mixture increased due to salt concentration. Salinity in clayey soil had a negative effect on the strength development and compressibility characteristics of stabilized dredged soils.

Studies on Development of Porosity in Carbon from Different Types of Bio-wastes

  • Manocha, Satish M.;Chauhan, Vanraj B.;Manocha, L.M.
    • Carbon letters
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 2002
  • The regional bio-wastes available in abundance in India were converted into porous carbon by heat treatment at different temperatures from $650-950^{\circ}C$. The wood retain shapes after pyrolysis though shrinkage occured both in axial and radial directions. The shrinkage in radial direction was found to be more than in axial direction in all woods. The density of woods and chars from these at a given temperature has been found to follow linear relationship. Chars were steam activated at temperature $700-800^{\circ}C$ for different times between 45-240 min. Both the temperature and time of activation with steam has a profound effect on surface area. Chars from softwoods like bagasse and castor oil plant were activated at lower temperature, i.e. $700-750^{\circ}C$ whereas hard wood chars have to be activated at higher temperature around $800^{\circ}C$. The morphology of wood as well as of chars has been studied by SEM. The comparison of the two showed that the nature of porosity in chars depends on precursor morphology, nature and physical state of wood and presence of inorganic compounds in the wood. Hard wood results in cross inter connected pores while softwood leads to fibriller structure. The present studies show that activated carbon with reasonably good surface area (${\sim}1000m^2/gm$) can be prepared from soft wood bio-wastes like bagasse and castor oil plant, while surface area ${\sim}1370m^2/gm$ was achieved from hard wood bio waste of pine wood.

  • PDF

Advanced Nanoscale Characterization of Cement Based Materials Using X-Ray Synchrotron Radiation: A Review

  • Chae, Sejung R.;Moon, Juhyuk;Yoon, Seyoon;Bae, Sungchul;Levitz, Pierre;Winarski, Robert;Monteiro, Paulo J.M.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.2
    • /
    • pp.95-110
    • /
    • 2013
  • We report various synchrotron radiation laboratory based techniques used to characterize cement based materials in nanometer scale. High resolution X-ray transmission imaging combined with a rotational axis allows for rendering of samples in three dimensions revealing volumetric details. Scanning transmission X-ray microscope combines high spatial resolution imaging with high spectral resolution of the incident beam to reveal X-ray absorption near edge structure variations in the material nanostructure. Microdiffraction scans the surface of a sample to map its high order reflection or crystallographic variations with a micron-sized incident beam. High pressure X-ray diffraction measures compressibility of pure phase materials. Unique results of studies using the above tools are discussed-a study of pores, connectivity, and morphology of a 2,000 year old concrete using nanotomography; detection of localized and varying silicate chain depolymerization in Al-substituted tobermorite, and quantification of monosulfate distribution in tricalcium aluminate hydration using scanning transmission X-ray microscopy; detection and mapping of hydration products in high volume fly ash paste using microdiffraction; and determination of mechanical properties of various AFm phases using high pressure X-ray diffraction.

Electrochemical Synthesis of Dumbbell-like Au-Ni-Au Nanorods and Their Surface Plasmon Resonance

  • Park, Yeon Ju;Liu, Lichun;Yoo, Sang-Hoon;Park, Sungho
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.57-62
    • /
    • 2012
  • In this report, we demonstrate that the longitudinal localized surface plasmon resonance mode can be suppressed when the nanorods were in dumbbell shape. The seed nanorods were synthesized by electrochemical deposition of metals into the pores of anodic aluminum oxide templates. The dumbbell-like nanorods were grown from seed Au-Ni-Au nanorods by a rate-controlled seed-mediated growth strategy. The selective deposition of Au atoms onto Au blocks of Au-Ni-Au nanorods produced larger diameter of Au nanorods with bumpy surface resulting in dumbbell-like nanorods. The morphology of nanorods depended on the reduction rate of $AuCl_4^-$, slow rate producing smooth surface of Au nanorods, but high reduction rate producing bumpy surface morphology. Through systematic investigation into the UV-Vis-NIR spectroscopy, we found that the multiple localized surface plasmon resonance (LSPR) modes were available from single-component Au nanorods. And, their LSPR modes of Au NRs with bumpy surface, compared to the smooth seed Au NRs, were red-shifted, which was obviously attributed to the increased electron oscillation pathways. While the longitudinal LSPR modes of smoothly grown Au NRs were blue-shifted except for a dipole transverse LSPR mode, which can be interpreted by decreased aspect ratio. In addition, dumbbell-like nanorods showed an almost disappeared longitudinal LSPR mode. It reflects that the plasmonic properties can be engineered using complex nanorods structure.

Effect of Deposition Parameters on the Morphology and Electrochemical Behavior of Lead Dioxide

  • Hossain, Md Delowar;Mustafa, Chand Mohammad;Islam, Md Mayeedul
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.197-205
    • /
    • 2017
  • Lead dioxide thin films were electrodeposited on nickel substrate from acidic lead nitrate solution. Current efficiency and thickness measurements, cyclic voltammetry, AFM, SEM, and X-ray diffraction experiments were conducted on $PbO_2$ surface to elucidate the effect of lead nitrate concentration, current density, temperature on the morphology, chemical behavior, and crystal structure. Experimental results showed that deposition efficiency was affected by the current density and solution concentration. The film thickness was independent of current density when deposition from high $Pb(NO_3)_2$ concentration, while it decreased for low concentration and high current density deposition. On the other hand, deposition temperature had negative effect on current efficiency more for lower current density deposition. Cyclic voltammetric study revealed that comparatively more ${\beta}-PbO_2$ produced compact deposits when deposition was carried out from high $Pb(NO_3)_2$ concentration. Such compact films gave lower charge discharge current density during cycling. SEM and AFM studies showed that deposition of regular-size sharp-edge grains occurred for all deposition conditions. The grain size for high temperature and low concentration $Pb(NO_3)_2$ deposition was bigger than from low temperature and high concentration deposition conditions. While cycling converted all grains into loosely adhered flappy deposit with numerous pores. X-ray diffraction measurement indicates that high concentration, high temperature, and high current density favored ${\beta}-PbO_2$ deposition while ${\alpha}-PbO_2$ converted to ${\beta}-PbO_2$ together with some unconverted $PbSO_4$ during cycling in $H_2SO_4$.

An Experimental Study on the Combustion Characteristics of CWM Single Droplet (CWM 단일액적의 연소특성에 관한 연구)

  • Park, Chong-Sang;Lee, Tae-Won;HA, Jong-Yul;Chung, Sung-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.402-410
    • /
    • 2000
  • As the combustion process of CWM consists of the water evaporation, the release and combustion of volatile matter, and the combustion of char for every particle, it is more complex than that of existent liquid fuel. Though the many studies on CWM combustion have been carried out by the single droplet using hanging methods or the multiple droplet using atomization methods, any report don't presents definite solution about the effects by the initial water evaporation and combustion of volatile. When CWM is suddenly exposed in the high temperature surroundings, the internal water evaporates and then each droplet builds up pores. Besides, porosity rate changes along the temperature of surroundings, the composition ratio of CWM, and the initial diameter of droplet. In result, because it affects the whole combustion rate, the combustion of CWM has complex mechanism as compared with the combustion of liquid or gas fuel. Therefore, concentrating on porous structure of CWM, this study has proceeded to acquire the basic data on the CWM injection combustion and closely examines the effects of the first stage combustion on the whole combustion by measuring the diameter variations, pore rate, mass fraction burned, and the internal temperature changes of CWM droplet. The results demonstrate that $60{\sim}70%$ of initial mass is reduced during water evaporation and volatile combustion period, and swelling rate, mass faction burned, and density variation are greatly concerned with atomization of CWM etc.

Analysis of the fracture surface morphology of concrete by the method of vertical sections

  • Konkol, Janusz;Prokopski, Grzegorz
    • Computers and Concrete
    • /
    • v.1 no.4
    • /
    • pp.389-400
    • /
    • 2004
  • The examinations carried out have confirmed a relationship existing between the character of fracture surfaces and the composition and structure of (basalt and gravel) concretes. For both concretes investigated, a very good correlation was obtained between the profile line development factor, $R_L$, and the fracture surface development factor, $R_S$. With the increase in the $R_L$ parameter, the fracture surface development factor $R_S$ also increased. Agreement between the proposed relationship of $R_S=f(R_L)$ and the proposal given by Coster and Chermant (1983) was obtained. Stereological examinations carried out along with fractographic examinations made it possible to obtain a statistical model for the determination of $R_L$ (or $R_S$) based on the volume of air voids in concrete, $V_{air}$, the specific surface of air pores, $S_V_{air}$ the specific surface of coarse aggregate, $S_{Vagg.}$, and the volume of mortar, $V_m$. An effect of coarse aggregate type on the obtained values of the profile line development factor, $R_L$, as well as on the relationship $R_S=f(R_L)$ was observed. The increment in the fracture surface development factor $R_S$ with increasing $R_L$ parameter was larger in basalt concretes than in gravel concretes, which was a consequence of the level of complexity of fractures formed, resulting chiefly from the shape of coarse aggregate grains.

Pore-scale Investigation on Displacement of Porewater by Supercritical CO2 Injection Using a Micromodel (초임계상 이산화탄소 주입으로 인한 공극수 대체에 관한 공극 규모의 마이크로모델 연구)

  • Park, Bogyeong;Lee, Minhee;Wang, Sookyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.3
    • /
    • pp.35-48
    • /
    • 2016
  • A micromodel was applied to estimate the effects of geological conditions and injection methods on displacement of resident porewater by injecting scCO2 in the pore scale. Binary images from image analysis were used to distinguish scCO2-filled-pores from other pore structure. CO2 flooding followed by porewater displacement, fingering migration, preferential flow and bypassing were observed during scCO2 injection experiments. Effects of pressure, temperature, salinity, flow rate, and injection methods on storage efficiency in micromodels were represented and examined in terms of areal displacement efficiency. The measurements revealed that the areal displacement efficiency at equilibrium decreases as the salinity increases, whereas it increases as the pressure and temperature increases. It may result from that the overburden pressure and porewater salinity can affect the CO2 solubility in water and the hydrophilicity of silica surfaces, while the neighboring temperature has a significant effect on viscosity of scCO2. Increased flow rate could create more preferential flow paths and decrease the areal displacement efficiency. Compared to the continuous injection of scCO2, the pulse-type injection reduced the probability for occurrence of fingering, subsequently preferential flow paths, and recorded higher areal displacement efficiency. More detailed explanation may need further studies based on closer experimental observations.

The Study on the Improvement of the Strength and the Thermal Shock Resistance of $Al_2O_3-ZrO_2$ Composites ($Al_2O_3-ZrO_2$ 복합체의 강도 및 열충격 저항의 향상에 관한 연구)

  • Hwang, K.H.;Bae, W.T.;Choi, M.D.;Oh, K.D.;Kim, K.U.;Kim, H.
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.3
    • /
    • pp.225-230
    • /
    • 1988
  • The strength and thermal shock resistance of $Al_2O_3-ZrO_2$ composites have been studied. The tetragonal $ZrO_2$ powder containing 1 mol.% $Y_2O_3$ and monoclinic $ZrO_2$ powder were prepared by coprecipitation method and subsequently mixed with $Al_2O_3$ powder and granulated by sieving. Duplex composites were prepared by dry mixing matrix agglomerate with 15 to 30 vol.% of dispersion agglomerate, followed by pressing and sintering at 1$600^{\circ}C$ for1 hr. These $Al_2O_3-ZrO_2$ 2 composites having heterogeneous structure showed improved thermal shock behaviors because of the microcracking and pores in dispersed granules, and compressive stresses around dispersed granules resulting from $ZrO_2$ transformation.

  • PDF