• Title/Summary/Keyword: pores structure

Search Result 521, Processing Time 0.028 seconds

Study on Performance of Lithium-Silicate Permeation and Changing Prosity Structure according to Water Content (수분의 함수율에 따른 공극구조의 변화와 리튬실리케이트의 침투성)

  • Kim, Kwang-Ki;Moon, Hyung-Jae;Kim, Jeong-Jin;Park, Soon-Jeon;Lee, Joo-Ho;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.769-772
    • /
    • 2008
  • Pores can become factors of reducing the capacity of concrete by being path of degradation factors and moisture can fill up pores inside of concrete, so evaluating the effect of unidirectional permeability due to moisture on pore structure of concrete structure is very important. Therefore, the change of pore structure in cases of 0%, 40%, 60%, 80% and 90% humidity being maintained on test specimens and in case of Lithium Silicate, which is chemical compound, being coated were evaluated. As a result, the condensation due to moisture could be confirmed since unidirectional permeability was decreased and the density of Pore Structure was improved as the percentage of water content was being increased. And, solution-type Lithium Silicate fills up pores of sizes around 1$\mu$m in the condition of carrying water and improves the density but the range of capacity improvement due to osmosis will be limited according to functional conditions.

  • PDF

The Analysis of the Micro-structure of Oxygen Plasma Treated PET Using a Nitrogen Porosimeter (Nitrogen Porosimeter를 이용한 산소 플라즈마 처리 PET의 미세구조 분석)

  • 김병인;김태경;조규민;임용진
    • Textile Coloration and Finishing
    • /
    • v.11 no.6
    • /
    • pp.1-6
    • /
    • 1999
  • The porosities of PET fibers were investigated using a nitrogen porosimeter according to oxygen plasma treatment and dyeing with a disperse dye, and they were discussed in terms of the change of internal micro-structure of the PET fiber. The total pore volume, surface area and average pore size of the plasma treated PET fibers increased expectably compared with the untreated sample. The PET fibers treated with oxygen plasma and then dyed with a disperse dye were increased significantly in the surface area and the total pore volume comparing with those of plasma treated only, but decreased in the average pore size. The increase of the surface area, after dyeing, of the plasma treated PET fibers was due to addition of the surface area of the dye itself to that of the PET fiber. The increase of the total pore volume of the plasma treated PET fibers by dyeing, which is the opposite result to the general idea that the pore volume of fibers would be reduced by occupation of dye molecules in the pores, could be explained by the free-volume model. This is that the amorphous region in the fiber expanded by occupation of dye molecules, and the marginal space surrounding dyes was generated as many smaller pores, and the decrease of the average pore size of the dyed sample also could be explained The decrease of the average pore size was caused by the splitting of a larger pore into smaller pores.

  • PDF

Molecular Diffusion of Water in Paper(II)-Water-diffusion theory on pore structure of paper- (종이내 수분확산(제2보)-종이의 공극구조에 의한 수분확산 이론-)

  • Yoon, Sung-Hoon;Jeon, Yang
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.3
    • /
    • pp.46-56
    • /
    • 1998
  • The objective of this study was to investigate the relationship between water vapor diffusion properties and the pore structure of paper. Gas-phase molecular diffusivity of water vapor through pores was determined based on the kinetic theory of gas. A mathematical model was derived to characterize the dimensional changes of the pore caused by the fiber-swelling mechanism. A modified-Fickean diffusion model was designed to simulate the water-vapor diffusion phenomena in porous paper web. Structural characterisocs of paper pores including the tortuosity and the shape factor was studied on a theoretical basis of Knudsen flow diffusion. Results are summarized as follows: 1. The theoretical water vapor diffusivity in gas-phase was 0.092$cm^2$ /min, 2. Porosity was inversely proportional to the degree of wet-swelling of paper, 3. Solid-phase water-diffusivity of fiber was 1.2 $ \times 10^{-5}cm^2/min$, 4. Modified diffusion model was fairly consistent to the experimental data (from part I), and 5. The Fickean pore tortuosity, ranging from 1,000 to 2,500, was in inverse proportion to the porosity of paper, and the Knudsen shape factor and length-angle factor for micro-pores in paper were 0.5~3.5 and about 340, respectively.

  • PDF

Influence of Heating Rate and Temperature on Carbon Structure and Porosity of Activated Carbon Spheres from Resole-type Phenolic Beads

  • Singh, Arjun;Lal, Darshan
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.181-189
    • /
    • 2009
  • Activated carbon spheres (ACS) were prepared at different heating rates by carbonization of the resole-type phenolic beads (PB) at $950^{\circ}C$ in $N_2$ atmosphere followed by activation of the resultant char at different temperatures for 5 h in $CO_2$ atmosphere. Influence of heating rate on porosity and temperature on carbon structure and porosity of ACS were investigated. Effect of heating rate and temperature on porosity of ACS was also studied from adsorption isotherms of nitrogen at 77 K using BET method. The results revealed that ACS have exhibited a BET surface area and pore volume greater than $2260\;m^2/g$ and $1.63\;cm^3/g$ respectively. The structural characteristics variation of ACS with different temperature was studied using Raman spectroscopy. The results exhibited that amount of disorganized carbon affects both the pore structure and adsorption properties of ACS. ACS were also evaluated for structural information using Fourier Transform Infrared (FTIR) Spectroscopy. ACS were evaluated for chemical composition using CHNS analysis. The ACS prepared different temperatures became more carbonaceous material compared to carbonized material. ACS have possessed well-developed pores structure which were verified by Scanning Electron Microscopy (SEM). SEM micrographs also exhibited that ACS have possessed well-developed micro- and meso-pores structure and the pore size of ACS increased with increasing activation temperature.

Self-Assembly of Helical Pores from Nonpolar Dendritic Dipeptides

  • Percec, Virgil
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.29-30
    • /
    • 2006
  • The synthesis of dendritic dipeptides $(4-3,4-3,5)12G2-CH_{2}-Boc-_{L}-Tyr-X-OMe\;where\;X\;=\;Gly,\;_{L}-Val,\;_{L}-Leu,\;_{L}-Ile,\;_{L}-Phe$, and L-Pro will be discussed. Their self-assembly in bulk and in solution and the structural and retrostructural analysis of their periodic assemblies will be compared to that of the previously reported and currently reinvestigated dendritic dipeptide with $X=_{L}-Ala$. All dendritic dipeptides containing as X nonpolar ${\alpha}-amino$ acids self-assemble into helical porous columns. The principles via which the aliphatic and aromatic substituents of X program the structure of the helical pores indicate synthetic pathways to helical pores with bioinspired functions based on artificial nonpolar ${\alpha}-amino$ acids will be discussed.

  • PDF

Porometric Study on the Gas Diffusion Layer in PEMFCs Using Method of Standard Porosimetry (MSP 기법을 적용한 고분자 전해질 연료전지 가스확산층의 포로시메트리 연구)

  • Lee, Yongtaek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.2
    • /
    • pp.64-69
    • /
    • 2013
  • The structure of pore network of gas diffusion layers (GDLs) in PEMFCs plays a critical role in determining the transport phenomena of reaction gas as well as generated water. In addition, the interactive characteristics between water and surface of pore are no less important than the structural characteristics of pore network. In this study, porometric investigation is conducted for two kinds of GDL using method of standard porosimetry which enable to distinguish hydrophobic pores from hydrophilic pores of GDLs. The porosity of TGPH-120 decreases by 6% by adding 30 wt.% of PTFE, but the porosity of hydrophilic pores decreases by 12%. The relation of $p_c-S_{nw}$ varies with the addition of PTFE, especially at low $p_c$.

Fabrication of Porous W by Freeze-Drying Process of Camphene Slurries with Spherical PMMA and WO3 Powders (구형 PMMA와 WO3 분말이 혼합된 Camphene 슬러리의 동결건조에 의한 W 다공체 제조)

  • Lee, Han-Eol;Jeon, Ki Cheol;Kim, Young Do;Suk, Myung-Jin;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.602-606
    • /
    • 2015
  • Porous W with spherical and directionally aligned pores was fabricated by the combination of sacrificial fugitives and a freeze-drying process. Camphene slurries with powder mixtures of $WO_3$ and spherical PMMA of 20 vol% were frozen at $-25^{\circ}C$ and dried for the sublimation of the camphene. The green bodies were heat-treated at $400^{\circ}C$ for 2 h to decompose the PMMA; then, sintering was carried out at $1200^{\circ}C$ in a hydrogen atmosphere for 2 h. TGA and XRD analysis showed that the PMMA decomposed at about $400^{\circ}C$, and $WO_3$ was reduced to metallic W at $800^{\circ}C$ without any reaction phases. The sintered bodies with $WO_3$-PMMA contents of 15 and 20 vol% showed large pores with aligned direction and small pores in the internal walls of the large pores. The pore formation was discussed in terms of the solidication behavior of liquid camphene with solid particles. Spherical pores, formed by decomposition of PMMA, were observed in the sintered specimens. Also, microstructural observation revealed that struts between the small pores consisted of very fine particles with size of about 300 nm.

Densification and Electrical Conductivity of Plasma-Sprayed (Ca, Co)-Doped LaCrO3 Coating (플라즈마 스프레이 (Ca, Co)-Doped LaCrO3 코팅층의 치밀화 및 전기전도도)

  • Park, Hee-Jin;Baik, Kyeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.27 no.3
    • /
    • pp.155-160
    • /
    • 2017
  • Doped-$LaCrO_3$ perovskites, because of their good electrical conductivity and thermal stability in oxidizing and/or reducing environments, are used in high temperature solid oxide fuel cells as a gas-tight and electrically conductive interconnection layer. In this study, perovskite $(La_{0.8}Ca_{0.2})(Cr_{0.9}Co_{0.1})O_3$ (LCCC) coatings manufactured by atmospheric plasma spraying followed by heat treatment at $1200^{\circ}C$ have been investigated in terms of microstructural defects, gas tightness and electrical conductivity. The plasma-sprayed LCCC coating formed an inhomogeneous layered structure after the successive deposition of fully-melted liquid droplets and/or partially-melted droplets. Micro-sized defects including unfilled pores, intersplat pores and micro-cracks in the plasma-sprayed LCCC coating were connected together and allowed substantial amounts gas to pass through the coating. Subsequent heat treatment at $1200^{\circ}C$ formed a homogeneous granule microstructure with a small number of isolated pores, providing a substantial improvement in the gas-tightness of the LCCC coating. The electrical conductivity of the LCCC coating was consequently enhanced due to the complete elimination of inter-splat pores and micro-cracks, and reached 53 S/cm at $900^{\circ}C$.

Effect of Powder Characteristic and Freeze Condition on the Pore Characteristics of Porous W (텅스텐 다공체의 기공특성에 미치는 분말특성 및 동결조건의 영향)

  • Kwon, Na-Yeon;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.259-263
    • /
    • 2012
  • Dependence of the freeze-drying process condition on microstructure of porous W and pore formation mechanism were studied. Camphene slurries with $WO_3$ contents of 10 vol% were prepared by milling at $50^{\circ}C$ with a small amount of dispersant. Freezing of a slurry was done in Teflon cylinder attached to a copper bottom plate cooled at $-25^{\circ}C$. Pores were generated subsequently by sublimation of the camphene during drying in air for 48 h. The green body was hydrogen-reduced at $800^{\circ}C$ for 30 min, and sintered in the furnace at $900^{\circ}C$ for 1 h. After heat treatment in hydrogen atmosphere, $WO_3$ powders were completely converted to metallic W without any reaction phases. The sintered samples showed large pores with the size of about $70{\mu}m$ which were aligned parallel to the camphene growth direction. Also, the internal wall of large pores and near bottom part of specimen had relatively small pores with dendritic structure due to the growth of camphene dendrite depending on the degree of nucleation and powder rearrangement in the slurry.

A Study on the manufacturing of porous membrane by the aluminum anodizing (알루미늄 양극산호를 이용한 다공성 견막 제조에 관한 연구)

  • Yoon, Jae-Hwan;Kang, Tak
    • Journal of Surface Science and Engineering
    • /
    • v.13 no.4
    • /
    • pp.221-227
    • /
    • 1980
  • When anodizing the Al in the acid electrolyte, it is well known that the parallel pores grow continuously perpendicular to the surface. This fact can be used for the manufacturing of the porous membrane, if thc pores pass through the anodized foil. Anodizing both surfaces of the Al-foil spontaneously in 20$^{\circ}C$, 2% oxalic acid under tile potentiostatic condition, it is found that the harrier layer remaining in the midst of the foil finally disappears and thc pores pass through the foil. And examined the porous structure change when the voltage is changed during the anodizing treatment. From the result, it is revealed that the new pores and cell grow, adjusting themselves to the final voltage. The characteristic of the porous membrane is greatly dependent upon the diameter of the pore and the cell. So studied the relationship between the voltage and the diameter of the pore and the cell quantitatively with the aid of field-assisted dissolution concept. And derived the following two equation, Pi = 8.32Vi, Ci = 26.80Vi. These equations are in good accord with the experimental data above 30V, but do not accord nuder 30V.

  • PDF