• Title/Summary/Keyword: pores structure

Search Result 521, Processing Time 0.022 seconds

Fabrication of Porous 3-Dimensional Ti Scaffold and Its Bioactivity by Alkali Treatment (다공성 3차원 Ti 지지체의 제조 및 알카리처리에 따른 생체활성 평가)

  • An, Sang-Hyun;Kim, Seung-Eon;Kim, Kyo-Han;Yun, Hui-Suk;Hyun, Yong-Taek
    • Korean Journal of Materials Research
    • /
    • v.19 no.7
    • /
    • pp.362-368
    • /
    • 2009
  • Ti scaffolds with a three-dimensional porous structure were successfully fabricated using powder metallurgy and modified rapid prototyping (RP) process. The fabricated Ti scaffolds showed a highly porous structure with interconnected pores. The porosity and pore size of the scaffolds were in the range of 66$\sim$72% and $300\sim400\;\mu$m, respectively. The sintering of the fabricated scaffolds under the vacuum caused the Ti particles to bond to each other. The strength of the scaffolds depended on the layering patterns. The compressive strength of the scaffolds ranged from 15 MPa to 52 MPa according to the scaffolds' architecture. The alkali treatment of the fabricated scaffolds in an aqueous NaOH solution was shown to be effective in improving the bioactivity. The surface of the alkali-treated Ti scaffolds had a nano-sized fibre-like structure. The modified surface showed a good apatite forming ability. The apatite was formed on the surface of the alkali treated Ti scaffolds within 1 day. The thickness of the apatite increased when the soaking time in a simulated body fluid (SBF) solution increased. It is expected that the surface modification of Ti scaffolds by alkali treatment could be effective in forming apatites in vivo and can subsequently enhance bone formation.

Chitosan/hydroxyapatite composite coatings on porous Ti6Al4V titanium implants: in vitro and in vivo studies

  • Zhang, Ting;Zhang, Xinwei;Mao, Mengyun;Li, Jiayi;Wei, Ting;Sun, Huiqiang
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.6
    • /
    • pp.392-405
    • /
    • 2020
  • Purpose: Titanium implants are widely used in the treatment of dentition defects; however, due to problems such as osseointegration failure, peri-implant bone resorption, and periimplant inflammation, their application is subject to certain restrictions. The surface modification of titanium implants can improve the implant success rate and meet the needs of clinical applications. The goal of this study was to evaluate the effect of the use of porous titanium with a chitosan/hydroxyapatite coating on osseointegration. Methods: Titanium implants with a dense core and a porous outer structure were prepared using a computer-aided design model and selective laser sintering technology, with a fabricated chitosan/hydroxyapatite composite coating on their surfaces. In vivo and in vitro experiments were used to assess osteogenesis. Results: The quasi-elastic gradient and compressive strength of porous titanium implants were observed to decrease as the porosity increased. The in vitro experiments demonstrated that, the porous titanium implants had no biological toxicity; additionally, the porous structure was shown to be superior to dense titanium with regard to facilitating the adhesion and proliferation of osteoblast-like MC3T3-E1 cells. The in vivo experimental results also showed that the porous structure was beneficial, as bone tissue could grow into the pores, thereby exhibiting good osseointegration. Conclusions: Porous titanium with a chitosan/hydroxyapatite coating promoted MC3T3-E1 cell proliferation and differentiation, and also improved osseointegration in vitro. This study has meaningful implications for research into ways of improving the surface structures of implants and promoting implant osseointegration.

Fabrication of Porous Tungsten by Freeze Casting and Vacuum Drying of WO3/Tert-butyl Alcohol Slurry (WO3/Tert-butyl alcohol 슬러리의 동결주조와 진공분위기 건조를 이용한 텅스텐 다공체 제조)

  • Heo, Youn Ji;Lee, Eui Seon;Oh, Sung-Tag;Jeong, Young-Keun
    • Journal of Powder Materials
    • /
    • v.29 no.2
    • /
    • pp.118-122
    • /
    • 2022
  • The synthesis of porous W by freeze-casting and vacuum drying is investigated. Ball-milled WO3 powders and tert-butyl alcohol were used as the starting materials. The tert-butyl alcohol slurry is frozen at -25℃ and dried under vacuum at -25 and -10℃. The dried bodies are hydrogen-reduced at 800℃ and sintered at 1000℃. The XRD analysis shows that WO3 is completely reduced to W without any reaction phases. SEM observations reveal that the struts and pores aligned in the tert-butyl alcohol growth direction, and the change in the powder content and drying temperature affects the pore structure. Furthermore, the struts of the porous body fabricated under vacuum are thinner than those fabricated under atmospheric pressure. This behavior is explained by the growth mechanism of tert-butyl alcohol and rearrangement of the powders during solidification. These results suggest that the pore structure of a porous body can be controlled by the powder content, drying temperature, and pressure.

Embedding Cobalt Into ZIF-67 to Obtain Cobalt-Nanoporous Carbon Composites as Electrode Materials for Lithium ion Battery

  • Zheng, Guoxu;Yin, Jinghua;Guo, Ziqiang;Tian, Shiyi;Yang, Xu
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.458-464
    • /
    • 2021
  • Lithium ion batteries (LIBs) is a kind of rechargeable secondary battery, developed from lithium battery, lithium ions move between the positive and negative electrodes to realize the charging and discharging of external circuits. Zeolitic imidazolate frameworks (ZIFs) are porous crystalline materials in which organic imidazole esters are cross-linked to transition metals to form a framework structure. In this article, ZIF-67 is used as a sacrificial template to prepare nano porous carbon (NPC) coated cobalt nanoparticles. The final product Co/NPC composites with complete structure, regular morphology and uniform size were obtained by this method. The conductive network of cobalt and nitrogen doped carbon can shorten the lithium ion transport path and present high conductivity. In addition, amorphous carbon has more pores that can be fully in contact with the electrolyte during charging and discharging. At the same time, it also reduces the volume expansion during the cycle and slows down the rate of capacity attenuation caused by structure collapse. Co/NPC composites first discharge specific capacity up to 3115 mA h/g, under the current density of 200 mA/g, circular 200 reversible capacity as high as 751.1 mA h/g, and the excellent rate and resistance performance. The experimental results show that the Co/NPC composite material improves the electrical conductivity and electrochemical properties of the electrode. The cobalt based ZIF-67 as the precursor has opened the way for the design of highly performance electrodes for energy storage and electrochemical catalysis.

Effect of domestic sewage on macro-micro physical and mechanical properties of soil

  • Zhi-Fei Li;Wei Liu;Yu-Ao Li;Yi Li;Shu-Chang Zhang;Yin-Lei Sun
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.3
    • /
    • pp.247-262
    • /
    • 2024
  • Domestic sewage can greatly affect the macro-micro physical-mechanical properties of building foundation soils. In order to investigate the effect of domestic sewage on physical and mechanical properties of soils, the physicochemical properties of three groups of different concentrations of domestic sewage contaminated soil were tested through indoor experiments. Combined with scanning electron microscopy, X-ray diffraction experiments, and grey relational analysis, the degree of influence of different concentrations of domestic sewage on the physicochemical properties of soil was compared and analyzed from multiple perspectives such as microstructure and mineral composition, revealing the influencing mechanism of soil pollution by domestic sewage. The results showed that under the immersion of contaminated water, the color of the soaking water turned black first and then yellow, and brownish yellow secretions appeared on the surface of the soil samples. The moisture content, specific gravity, density, and pore ratio index of the soil samples immersed in 50% and 100% domestic sewage decreased with the increase of sewage concentration, while the liquid limit of the soil samples changed in the opposite direction. The immersion time had little effect on the slope of the compression curve of the soil samples soaked in tap water. For the soil samples immersed in domestic sewage, the slope of the compression curve and the compression coefficient increased with the increase of domestic sewage concentration and immersion time, while the compression modulus showed the opposite trend. In the soil samples immersed in tap water, there were a large number of small particles and cementitious substances, and the structure was relatively dense. With the increase of domestic sewage concentration, the microstructure of the soil changed significantly, with the appearance of sigle particle structure, loose and disorderly arrangement of particles, increased and enlarged pores, gradual reduction of small particle substances and cementitious substances, and the soil structure transformed from compact to loose. The research findings can provide theoretical reference for contaminated geotechnical engineering.

Study on the Enhanced Specific Surface Area of Mesoporous Titania by Annealing Time Control: Gas Sensing Property (열처리 시간에 따른 메조기공 타이타니아의 비표면적 향상 연구: 가스센싱 특성 변화)

  • Hong, M.-H.;Park, Ch.-S.;Park, H.-H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.21-26
    • /
    • 2015
  • Mesoporous ceramic materials were applied in various fields such as adsorbent and gas sensor because of low thermal conductivity and high specific surface area properties. This structure could be divided into open-pore structure and closed-pore structure. Although closed-pore structure mesoporous ceramic materials have higher mechanical property than open-pore structure, it has a restriction on the application because the increase of specific surface area is limited. So, in this work, specific surface area of closed-pore structure $TiO_2$ was increased by anneal time. As increased annealing time, crystallization and grain growth of $TiO_2$ skeleton structured material in mesoporous structure induced a collapse and agglomeration of pores. Through this pore structural change, pore connectivity and specific surface area could be enhanced. After anneal for 24 hrs, porosity was decreased from 36.3% to 34.1%, but specific surface area was increased from $48m^2/g$ to $156m^2/g$. CO gas sensitivity was also increased by about 7.4 times due to an increase of specific surface area.

Effect of Hydration on Swelling Properties and Shear Strength Behavior of MgO-sand Mixture (수화 반응에 따른 MgO-모래 혼합물의 팽창 특성 및 전단 거동 변화)

  • Lee, Jihwan;Yoon, Boyoung;Choo, Hyunwook;Lee, Woojin;Lee, Changho
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.97-106
    • /
    • 2020
  • Swelling properties and shear strength behavior of MgO-Sand mixtures with hydration procese of MgO are compared according to different MgO contents (WMgO/WTotal=0, 30, 50, 70, 100%) in this study. The specimens are prepared by mixing with crushed MgO refractory bricks and silica sand. After hydration, the particle size and the specific gravity of MgO were decreases. Through microstructure observation and X-ray diffraction analysis, it is confirmed that MgO changes from the cubic structure of Periclase to the hexagonal cubic structure of Brucite after hydration. As the MgO content increases, both swelling rate and swelling pressure of the mixtures increase. WMgO/WTotal=30% specimen shows relatively low swelling pressure and swelling rate because produced Mg(OH)2 mainly fills the pores between sand particles. However, in the case of MgO more than 50%, swelling pressure and swelling rate increase significantly because Mg(OH)2 fills the pores of sand particles at first and then either pushes out sand particles or Mg(OH)2 particles after filling the pores. As a result of the direct shear test, before hydration, the mixtures show a dilative behavior on high MgO contents and a contractive behavior on low MgO contents. However, after hydration, the behavior of all mixtures changes to contractive behavior. The threshold fraction of fine (i.e., Mg(OH)2) contents of the hydrated MgO-Sand mixtures reveals approximately 60% compared with normalized shear strength.

The Occurrence of Glauconite Grains on the Continental Shelves off the Korean Peninsula: Distribution, Morphology and Origin

  • Lim, Dhong-Il;Park, Yong-Ahn;Cho, Ju-Whan;Choi, Jin-Yong
    • Journal of the korean society of oceanography
    • /
    • v.34 no.2
    • /
    • pp.113-121
    • /
    • 1999
  • Glauconite grains are widely distributed in the outer shelf surficial sandy sediments of the Korean continental shelves. Morphologically, these grains are characterized by ovoidal-shaped pellets with bulbous exterior, greenish color and moderately well polished surface. In thin sections, the glauconite grains are massive and contain numerous impurities composed mainly of quartz, feldspar and mica. The morphologies and microscopic examinations indicate mainly fecal pellet as a parent matierials for glauconite. SEM examination shows that glauconitic smectite crystals grow in pores and along fractures of the host grains, commonly as a boxwork arrangement or rosette clusters of blades. Bulbous external shape, high potassium content and rosette-shaped smectite structure, reflect the evolved stage (more than 10$^4$ years in age) of glauconite authigenesis. Moreover, the association of the glauconite grains with the relict sandy sediments on the outer shelf, impliesthat the glauconite grains are geologically old, or at least have formed under the environmental conditions different from the present shelf. The widespread occurrence of the glauconite grains, therefore, might be primarily related with redeposition of sediments transported from the outer shelf during Holocene transgression.

  • PDF

Effects of Heat Treatments of Aluminum Substrate on Nanopore Arrays in Anodic Alumina (열처리가 알루미나 나노기공의 배열에 미치는 영향)

  • Cho, S.H.;Oh, H.J.;Kim, S.S.;Joo, E.K.;Yoo, C.W.;Chi, C.S.
    • Korean Journal of Materials Research
    • /
    • v.12 no.11
    • /
    • pp.856-859
    • /
    • 2002
  • To investigate effects of heat treatments including grain size control in substrate aluminum on nanopore arrays in anodic alumina template, aluminum was heat treated at $500^{\circ}C$ for 1h. The heat treated aluminum was anodized by two successive anodization processes in oxalic solution and the nanopore arrays in anodic alumina layer were studied using TEM and FE-SEM. The highly ordered porous alumina templates with 110 nm interpore distance and 40 nm pore diameter have been observed and the pore array of the anodic alumina has a uniform and closely-packed honeycomb structure. In the case of alumina template obtained from heat treated aluminum substrate, the well- ordered nanopore region in anodic alumina increased and became more homogeneous compared with that from non-heattreated one.

Fabrication of Three-dimensionally Ordered Macroporous Electrode Materials by Using PMMA Template (PMMA 구를 주형으로 이용한 3DOM 전극 구조체의 제조)

  • Seo Kyoung Soo;Jung Ha-Kyun;Son Yongkeun
    • Korean Journal of Materials Research
    • /
    • v.14 no.8
    • /
    • pp.587-594
    • /
    • 2004
  • Three-dimensionally ordered macroporous (3DOM) structures of the $LiCoO_2$ electrode materials for Li secondary batteries were fabricated by using the close-packed arrays of PMMA spheres served as templates. In order to successfully fabricate the cathode materials with highly ordered array form, the metal citrates were applied to new precursors. The precursor/template composites were prepared by the infiltration with metal citrate precursors into the voids of template. By removing the PMMA templates, then, the inverse opal structures with the uniform pores of narrow size distribution were resulted. It was confirmed that the 3DOM $LiCoO_2$ material is to take a single phase of rocksalt (R3m) structure. In addition, 3DOM $LiNiO_2$ and $LiMn_{2}O_4$ cathode materials were fabricated using an identical preparation procedure. Also, the morphology of the 3DOM cathode materials calcined at $500^{\circ}C\;to\;700^{\circ}C$ was observed by scanning electron microscope.