• Title/Summary/Keyword: pore-size

Search Result 1,946, Processing Time 0.034 seconds

Characteristics of PM10, VOCs and Aldehydes Levels in Nail and Hair Shops (네일샵미용실의 실내공기 중 미세먼지(PM10), 휘발성 유기화합물 (VOCs), 알데하이드류(Aldehydes)의 농도 및 업소 특성에 따른 상관성 분석)

  • Lee, Boram;Kuag, Sooyoung;Yang, Wonho;Jun, Sang il;Kim, Jung-su;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.6
    • /
    • pp.509-515
    • /
    • 2017
  • Objectives: The purpose of this study was to assess the indoor levels of $PM_{10}$, VOCs and aldehydes in nail shop and hair salon. Methods: The field survey was conducted for 52 hair salons 52 nail shops, and 26 shop-in-shops in Seoul and Daegu city. The field technicians investigated characteristics of each shop including operating time, indoor volume, ventilation and so on. Indoor concentrations of $PM_{10}$, VOCs and aldehydes, indoor temperature and humidity were measured in 12 hair salons, 12 nail shops and 6 shop-in shops. MP Surveryor II (Graywolf, USA) was used to measure $CO_2$ concentration, temperature and humidity for 8 hours. $PM_{10}$ concentrations were measured by minivolume air sampler with Teflon quartz filter ($0.2{\mu}m$ pore size, ${\varphi}$ 47 mm, Graseby-Anderson TEF-DISKTM) for 6 hours. VOCs passive sampler (OVM 3500) was used to collect VOCs for 8 hours and analyzed by GC/MSD. Results: The $CO_2$ concentrations were $759.4{\pm}58.2$ ppm in nail shops, $731.0{\pm}72.5$ ppm in hair salons, and $656.4{\pm}31.2$ ppm in shop-in-shops. The $PM_{10}$ concentrations were $27.5{\pm}14.2{\mu}g/m^3$ in nail shops, $33.1{\pm}6.3{\mu}g/m^3$ in hair salons, and $39.0{\pm}26.9{\mu}g/m^3$ in shop-in-shops. TVOCs concentrations were $3085.4{\pm}1667.8{\mu}g/m^3$ in nail shops, $2131.1{\pm}617.3{\mu}g/m^3$ in hair salons, and $1550.3{\pm}529.0{\mu}g/m^3$ in shop-in-shops. TVOCs concentrations in nail shops were significantly higher than those in hair salons and shop-in-shops (p=0.002). Formaldehyde concentrations were $60.8{\pm}36.6{\mu}g/m^3$ in nail shops, $89.1{\pm}55.4{\mu}g/m^3$ in hair salons, and $45.1{\pm}22.5{\mu}g/m^3$ in shop-in-shops. Conclusion: TVOCs concentrations in nail shop were the highest among others. TVOC concentrations in all stores exceeded indoor air quality stand of indoor air quality control in public-use facilities, etc act.

Performance of EDLC Electrodes Prepared by Post Treatments of Commercial Activated Carbon (상업용 활성탄의 후처리에 의하여 제조된 전기이중층 커패시터용 전극재의 특성)

  • Wu, Jing-Yu;Hong, Ik-Pyo;Kim, Myung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.362-370
    • /
    • 2013
  • The coconut shell based activated carbon was applied for EDLC (electric double layer capacitor) electrode with the post treatments. The electrochemical properties were evaluated with a coin cell using the activated carbon as electrode. The initial gravimetric and volumetric capacitance of the coconut shell based activated carbon electrode s were 66 F/g and 39 F/cc, and these values decreased to 54 F/g and 32 F/cc after 100 cycles, respectively showing 82% of charge-discharge efficiency. The properties of CV graph with the commercial activated carbon electrodes showed the serious polarization as the result of additional reaction between electrolyte and impurities of the electrode materials. In order to remove impurities efficiently, the commercial activated carbon was treated by alkali and acid solutions consecutively, and then heat treated to control the pore size distribution and the content of surface functional groups. The surface functional groups decreased with the increased heat temperature and the specific capacitance increased with the decreased surface functional groups. The initial capacitance of coconut shell based activated carbon elec trode which was treated with NaOH and HNO3, and then heat treated at $800^{\circ}C$ was 44 F/cc, and the value turned out to be 42 F/cc after 100 cycles, showing over 95% of charge-discharge efficiency.

Study on the elution of biostimulant for in-situ bioremediation of contaminated coastal sediment (오염된 연안저질의 현장생물정화를 위한 미생물활성촉진제의 용출특성 연구)

  • Woo, Jung-Hui;Song, Young-Chae;Senthilkumar, Palaninaicker
    • Journal of Navigation and Port Research
    • /
    • v.38 no.3
    • /
    • pp.239-246
    • /
    • 2014
  • A study on the elution characteristics of biostimulating agents (sulfate and nitrate) from biostimulants which are used for in-situ bioremediation for the coastal sediment contaminated with organic matter was performed. The biostimulating agents were mixed with the coastal sediment, and then massed the mixture into ball. Two kinds of ball type biostimulant were prepared by coating the ball surface with two different polymers, cellulose acetate and polysulfone. A granular type biostimulant (GTB) was also prepared by impregnating a granular activated carbon in the biostimulating agent solution. The image of scanning electron microscopy for the biostimulant coated with cellulose acetate (CAB) showed that the inner side of the coating layer consisted of irregular and bigger size of pores, and the surface layer had tight structure like beehive. For the biostimulant coated with polyfulfone (PSB), the whole coating layer had a fine structure without pore. The elution rate of the biostimulating agents for the CAB was higher than that for the PSB, and the elution rate for the GTB was considerably higher than that for the PSB in distilled water as well as in sea water. The elution rate of the biostimulating agents in turbulent water flow was about 3 times higher than that in standing water, and the elution rate of nitrate was higher than that of sulfate from the stimulating agents.

Selective Chemical Dealloying for Fabrication of Surface Porous Al88Cu6Si6 Eutectic Alloy (화학적 침출법을 통한 표면 다공성 Al-Cu-Si 공정 합금 제조)

  • Lee, Joonhak;Kim, Jungtae;Im, Soohyun;Park, Hyejin;Shin, Hojung;Park, Kyuhyun;Qian, M.;Kim, Kibeum
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.227-232
    • /
    • 2013
  • Al-based alloys have recently attracted considerable interest as structural materials and light weight materials due to their excellent physical and mechanical properties. For the investigation of the potential of Al-based alloys, a surface porous $Al_{88}Cu_6Si_6$ eutectic alloy has been fabricated through a chemical leaching process. The formation and microstructure of the surface porous $Al_{88}Cu_6Si_6$ eutectic alloy have been investigated using X-ray diffraction and scanning electron microscopy. The $Al_{88}Cu_6Si_6$ eutectic alloy is composed of an ${\alpha}$-Al dendrite phase and a single eutectic phase of $Al_2Cu$ and ${\alpha}$-Al. We intended to remove only the ${\alpha}$-Al phase and then the $Al_2Cu$ phase would form a porous structure on the surface with open pores. Both acidic and alkaline aqueous chemical solutions were used with various concentrations to modify the influence on the microstructure and the overall chemical reaction was carried out for 24 hr. A homogeneous open porous structure on the surface was revealed via selective chemical leaching with a $H_2SO_4$ solution. Only the ${\alpha}$-Al phase was successfully leached while the morphology of the $Al_2Cu$ phase was maintained. The pore size was in a range of $1{\sim}5{\mu}m$ and the dealloying depth was nearly $3{\mu}m$. However, under an alkaline NaOH, aqueous solution, an inhomogeneous porous structure on the surface was formed with a 5 wt% NaOH solution and the morphology of the $Al_2Cu$ phase was not preserved. In addition, the sample that was leached by using a 7 wt% NaOH solution crumbled. Al extracted from the Al2Cu phase as ${\alpha}$-Al phase was dealloyed, and increasing concentration of NaOH strongly influenced the morphology of the $Al_2Cu$ phase and sample statement.

Preparation and Characterization of Kalsilite ($KAISiO_4$) as a Novel Inorganic Membrane Material (새로운 무기분리막 재료로서의 Kalsilite ($KAISiO_4$) 제조와 물성)

  • Lee, Yong-Taek;Ahn, Hyo-Seong
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.103-107
    • /
    • 2008
  • Membrane process has been focused as an alternative separation process because not only it exhibits a high selectivity compared with a traditional distillation process, but also it is known to be an energy saving separation process. Inorganic membrane, especially zeolite membrane, has been studied since it can be operated in severe conditions compared to the organic membranes. Recently, new zeolite materials are tested as an inorganic membrane material to overcome disadvantages of existing zeolite membranes. Kalsilite can be used as an inorganic membrane material for gas separation and selective water separation from water/organic mixtures because it is expected to be hydrophilic resulted from Si/Al ratio of 1 like zeolite 4A and has a narrow pore size of 0.36 nm. In this study, kalsilite was synthesized by a new economical hydrothermal process using Si : Al : K : $H_2O$ mole ratio of 1 : 1 : 8 : 60. The synthesized kalsilite powder was confirmed by XRD and has a mean diameter of $2.73{\mu}m$. The vapor adsorption test showed the synthesized kalsilite is hydrophilic.

Removal of Aqueous Calcium Ion by Micellar Enhanced Ceramic Membranes Adding Surfactant (계면활성제를 첨가한 미셀 형성 세라믹 분리막에 의한 칼슘이온 제거)

  • Park, Jin-Yong;Park, Bo-Reum
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.7-25
    • /
    • 2008
  • Sodium dodecyl sulfate, which was anionic surfactant, at a concentration higher than its critical micellar concentration was added to calcium solution for forming micelles. Then aggregates were formed by adsorption or binding of calcium ions on the surface of micelles, and gathering between them, and then rejected by two kinds of ceramic membranes to remove calcium ions. As result, rejection rates of calcium were higher than 99.98%. And in our experimental range the higher TMP trended to increase the resistance of membrane fouling ($R_f$), total permeate volume ($V_T$), dimensionless permeate flux ($J/J_o$) and permeate flux (J) because TMP was driving force. And we investigated effects of $N_2$-back-flushing time and filtration time, that was back-flushing period, during periodic $N_2$-back-flushing on ceramic membranes. As result, optimal BTs for NCMT-623l ($0.07{\mu}m$ pore size) and NCMT-7231 membrane ($0.10{\mu}m$) were 10 sec and 15 sec, respectively. Also, optimal FT was 5 min for both membranes, and the frequent $N_2$-back-flushing could decrease membrane fouling effectively. Then, the optimal conditions resulting from our experiments for synthetic calcium solution were applied to groundwater using as washing process of soymilk package. As result, rejection rates of calcium were higher than 99.98%.

Hydrogenation Characteristics of Aromatics in Residue Oil of Naphtha Cracking on Pt/Pd Impregnated Mesoporous Molecular Sieve (메조포러스 분자체에 담지된 Pt/Pd 촉매상에서 납사분해 잔사유의 방향족 화합물 수소화 특성)

  • Choi, Jong Hwa;Jeong, Soon Yong;Oh, Sung-Geun
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.675-682
    • /
    • 2005
  • Al containing mesoporous molecular sieve (Al-MMS) was synthesized by hydrolysis of $H_2SiF_6$ and $Al(NO_3)_3{\cdot}9H_2O$. The material obtained was characterized by XRD, $N_2$-physisorption. The specific surface area was $981m^2/g$, and the average pore size was uniformity $39{\AA}$. It was confirmed that the acidity of Al-MMS was milder than that of zeolite Y based on the results of $NH_3$-TPD. Active materials, Pt and Pd, were loaded on Al-MMS in order to examine the feasibility of using Al-MMS as a catalyst support in the hydrogenation of aromatic compounds included in the residue oil of a naphtha cracker. The hydrogenation activity of PtPd/Al-MMS has been studied by following the kinetics of the hydrogenation of naphthalene, and by comparing the kinetic parameters obtained with Pt and Pd catalysts supported on the other mesoporous material support and commercial conventional support materials. PtPd/Al-MMS catalyst shows the highest activity of hydrogenation and sulfur resistance. The high activity of PtPd/Al-MMS was confirmed again in the hydrogenation of PGO (pyrolized gas oil), which is residue oil obtained from a naphtha cracker. Therefore, PtPd/Al-MMS can be applied to the hydrogenation of aromatic compounds included in the residue oil of a commercial naphtha cracker commericially.

AN EXPERIMENTAL STUDY ON THE CYTOTOXICITY OF CAVITY LINERS (이장재의 세포독성에 관한 실험적 연구)

  • Kim, Jeong-Hye;Kim, Yung-Hai
    • Restorative Dentistry and Endodontics
    • /
    • v.15 no.2
    • /
    • pp.77-92
    • /
    • 1990
  • The purpose of this study was to evaluate the cytotoxic effects of 6 cavity liners in vitro. Human fibroblasts were cultured in ${\alpha}$-MEM and each liner was manually mixed and filled in glass ring cylinder ($8{\times}8mm$ in diameter, in height). The cylinders filled with the liners were placed in the center of the dish (35mm in diameter) containing 3ml of ${\alpha}$-MEM. Millipore filters (pore size $0.22{\mu}m$) to simulate dentin barrier were also placed between the bottom of cylinder and the dish. Then the culture dishes were stored in 5% $CO_2$ containing incubator for 5 and 10 days at the temperature of $36.6^{\circ}C$. The results of the experiments were analyzed by counting the cells in the period of 5 and 10 days respectively, and were assessed by calculating the cell multiplication rate and the relative growth rate. The experiemntal groups and the control group were compared statistically. The results of the study were summarized as follows: 1. The cell number of Zinc oxide-eugenol was $(4.13{\pm}1.31){\times}10^4$ cells/ml at 5 days and $(4.32{\pm}1.61){\times}10^4$ cells/ml at 10 days. 2. The cell number of Cavitec was ($8.35{\pm}2.87{\times}10^4$ cells/ml and $(10.08{\pm}5.10){\times}10^4$ cells/ml at 5 and 10 days respectively. 3. The cell number of Dycal was $(13.56{\pm}3.89){\times}10^4$ cells/ml at 5 days and $(34.75{\pm}8.85){\times}10^4$ cells/ml at 10 days. 4. The cell number of life was $(11.46{\pm}3.32){\times}10^4$ cells/ml and $(21.92{\pm}6.18){\times}10^4$ cells/ml at 5 and 10 days. 5. The cell number of Base cement was $(13.73{\pm}3.73){\times}10^4$ cells/ml and $(36.68{\pm}5.20){\times}10^4$ cells/ml at 5 and 10 days. 6. The cell number of Dentin cement was $(13.58{\pm}3.90){\times}10$ cells/ml and $(66.95{\pm}24.09){\times}10$ cells/ml at 5 and 10 days. 7. The cell multiplication rate of zinc oxide-eugenol cements was significantly less than that of the calcium hydroxide and glass ionomer cement. (P < 0.05)

  • PDF

Isolation of Marine Bacteria Killing Red Tide Microalgae II. Isolation and Algicidal Properties of Pseudomonas sp. LG-2 Possessing Killing Activity for Dinoflagellate, Prorocentrum micans (적조생물 살조세균 탐색 II. 적조생물 Prorocentrum micans 살조세균 Pseudomonas sp. LG-2의 분리와 살조특성)

  • LEE Won-Jae;PARK Young-Tae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.6
    • /
    • pp.852-858
    • /
    • 1998
  • We have isolated a bacterial strain that tends to kill P. micans from the mixed culture of p. minns plus seawater filtrate (poresize, 0.8 $\mu$m) collected at Masan bay in July 1996, in which the mixed culture grown in the f/2 medium. According to the experimental results of the isolated bacterium such as fatty acids analysis, morphological and biochemical characteristic tests, the strain was supposed to be a Pseudomonas and then it was named as Pseudomonas sp. LG-2. The killing effect of Pseudomonas sp. LG-2 against P. micans was proportionally increased with the concentrations of culture filtrate (pore size, 0.8 $\mu$m) is well as with the number of bacterium inoculated. In the mixed culture inoculated with $1.3\times10^6$ cells/ml of Pseudomonas sp. LG-2, the number of P. micans (2,000 cells/ml) was gradually decreased and then killed below 100 cells/ml within 7 days. In addition, the culture filtrate with $30\%$ of final concentration revealed a significant killing effect against P. micans around 3 days after culture. In the relationship between killing effects and growth stage of Pseudomonas sp. LG-2, the culture filtrate at lag phase has little effects on P. micans. In constant, the culture filtrate at mid-log phase showed the killing effect by decreasing P. micans to 112 in number within 5 days. In particular, the culture filtrate at stationary phase showed a significant killing effect against P. micans in which the majority of it was killed after 3 day culture. The species specificity of killing effects of Pseudomonas sp. LG-2 against 5 species of dinoflagellate was only found in P. micans and Scrippsiella trochoidea.

  • PDF

Chitosan-alginate Gel Modified Poly (L-Lactic-co-ε-Caprolactone) (PLCL) as a Scaffold for Cartilage Tissue Engineering (변형된 키토산 알지네이트 겔 poly (L-Lactic-co-ε-Caprolactone) 지지체의 연골 조직 재생 평가)

  • Sutradhar, Bibek Chandra;Hwang, Yawon;Choi, Seokhwa;Kim, Gonhyung
    • Journal of Veterinary Clinics
    • /
    • v.32 no.3
    • /
    • pp.224-230
    • /
    • 2015
  • This study was designed in the fabricated poly (L-Lactic-co-${\varepsilon}$-Caprolactone) (PLCL) scaffold using chitosan-alginate hydrogel, which would be more suitable to maintain the biological and physiological functions continuing three dimensional spatial organizations for chondrocytes. As a scaffold, hydrogels alone is weak at endure complex loading within the body. In this study, we made cell hybrid scaffold constructs with poly (L-Lactic-co-${\varepsilon}$-Caprolactone) (PLCL) scaffold and hydrogels to make a three-dimensional composition of cells and extracellular matrix, which would be a mimic of a native cartilage. Using a particle leaching technique with NaCl, we fabricated a highly-elastic scaffold from PLCL with 85% porosity and $300-500{\mu}m$ pore size. A mixture of bovine chondrocytes and chitosan-alginate gel was seeded and compared with alginate as a control on the PLCL scaffold. The cell maturation, proliferation, extracellular matrix synthesis, glycosaminoglycans (sGAG) production and collagen type-II expressions were better in chondrocytes seeded in chitosan-alginate hydrogel than in alginate only. These results indicate that chondrocytes with chitosan-alginate gel on PLCL scaffolds provide an appropriate biomimetic environment for cell proliferation and matrix synthesis, which could successfully be used for cartilage repair and regeneration.