• Title/Summary/Keyword: pore shape effect

Search Result 69, Processing Time 0.031 seconds

Effect of Residual Binder on Grain Growth during Sintering of $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$

  • Yun, Jung-Yeul;Jang, Wook-Kyung;Jeon, Jae-Ho;L.Kang, Suk-Joong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.209-210
    • /
    • 2006
  • Organic binders are usually pre-mixed with ceramic powders to enhance the formability during the shape forming process. These binders, however, must be eliminated before sintering in order to avoid pore formation and unusual grain growth during sintering. The present work was performed to investigate the effects of residual binder on grain growth behavior during sintering of $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ piezoelectric ceramics. The microstructures of sintered samples were examined for various thermal processes and atmosphere at debinding. Addition of binder seems to promote abnormal grain growth especially in incompletely debinded regions and to make the grain shape change from corner-rounded to faceted.

  • PDF

Increased Osteoblast Adhesion Densities on High Surface Roughness and on High Density of Pores in NiTi Surfaces

  • Im, Yeon-Min;Gang, Dong-U;Kim, Yeon-Uk;Nam, Tae-Hyeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.39.1-39.1
    • /
    • 2009
  • NiTi alloy is widely used innumerous biomedical applications (orthodontics, cardiovascular, orthopaedics, etc.) for its distinctive thermomechanical and mechanical properties such as shape memory effect, super elasticity, low elastic modulus and high damping capacity. However, NiTi alloy is still a controversial biomaterial because of its high Ni content which can trigger the risk of allergy and adverse reactions when Ni ion releases into the human body. In order to improve the corrosion resistance of the TiNi alloy and suppress the release of Ni ions, many surface modification techniques have been employed in previous literature such as thermal oxidation, laser surface treatment, sol-gel method, anodic oxidation and electrochemical methods. In this paper, the NiTi was electrochemically etched in various electrolytes to modify surface. The microstructure, element distribution, phase composition and roughness of the surface were investigatedby scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry(EDS), X-ray diffractometry (XRD) and atomic force microscopy (AFM). Systematic controlling of nano and submicron surface features was achieved by altered density of hydro fluidic acid in etchant solution. Nanoscale surface topography, such as, pore density, pore width, pore height, surface roughness and surface tension were extensively analyzed as systematical variables.Importantly, bone forming cell, osteoblast adhesion was increased in high density of hydro fluidic treated surface structures, i.e., in greater nanoscale surface roughness and in high surface areas through increasing pore densities.All results delineate the importance of surface topography parameter (pores) inNiTi to increase the biocompatibility of NiTi in identical chemistry which is crucial factor for determining biomaterials.

  • PDF

The Effect of Thickening Agent on Foaming and Mechanical Properties of A356 Alloy (A356 합금의 발포 특성 및 기계적 성질에 미치는 점증제의 영향)

  • Tak, Byeong-Su;Kim, Byeong-Gu;Jeong, Seung-Reung;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.30 no.6
    • /
    • pp.241-246
    • /
    • 2010
  • The viscosity of foam metal is necessary to get the pores, but it is difficult to manufacture net-shape foam, because the fluidity decreases by increasing viscosity. In this study, the A356 alloy which has good fluidity and less defect was selected and fabricated to foam metal. To understand about effect of thickening agent on foaming and mechanical properties, quantity of thickening agent was changed. The pore size, porosity and distribution of foam metal were measured by i-solution program. And compression test were performed by UTM. In case of 3.0wt% Ca in thickening agent, it is found that most of foam consist of homogeneous shape, and the growth height had the highest value of 204 mm in the all fabricated foams. The porosity was 93% and compressive strength was 3.1 MPa. In the microstructure, the $Al_2Si_2Ca$ intermetallic compound and Ti were observed. The vickers hardness value rose with increasing viscosity value.

Mechanical Characteristic of Backsulgi Added with Rich Sources of Phospholipid (인지방질 함유식품 첨가에 따른 백설기의 물성적 특성)

  • 이경아;김경자
    • Korean journal of food and cookery science
    • /
    • v.18 no.4
    • /
    • pp.381-389
    • /
    • 2002
  • The purpose of this study was to select an ingredient acting as a natural emulsifier to retard the retrogradation of rice cake by the measurement of mechanical characteristics of the cakes. For the purpose, Backsulgi, the most basic type of rice cake, was prepared by adding various ingredients having high contents of lecithin such as raw soybean powder, parched soybean powder, soybean oil, egg yolk powder, and the measurements and observations on the chromaticity, swelling power, pore ratio and cross-section were made. In addition, changes in the textural characteristics of Backsulgi samples were determined while storing them at the temperatures of 4$^{\circ}C$ and 20$^{\circ}C$ for 0, 1, 2 and 3 days. The results of the study were as follows: 1. In terms of chromaticity, the Backsulgi samples added with egg yolk powder, raw soybean flour and parched soybean flour were higher in yellowness(b) than the controls. 2. Both swelling power and pore ratio of Backsulgies added with raw soybean flour were higher than those of controls. 3. A cross-sectional observation using an electron microscope indicated that rice flour particles of controls had uneven pores and were conglomerated in a large lump while Backsulgi samples of raw soybean flour or roasted soybean flour had large and even pores and showed loosened bonding to be transformed into a sponge shape. 4. In hardness, Backsulgi samples added with raw soybean flour had less changes in hardness than that of controls, indicating that the effect of retarding retrogradation was higher when the storage time got longer.

Surface Modification of Functional Titanium Oxide to Improve Corrosion Resistance (내식성 향상을 위한 기능성 타이타늄 표면 개질)

  • Park, Youngju;Jeong, Chanyoung
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.256-265
    • /
    • 2021
  • Titanium is applied in various industries due to its valuable properties and abundant reserves. Generally, if a highly uniform oxide structure and a high-density oxide film is formed on the surface through anodization treatment, the utility value such as color appearance and corrosion inhibition efficiency is further increased. The objective of this study was to determine improvement of water-repellent property by controlling titanium oxide parameters such as pore size and inter-pore distance to improve corrosion resistance. Oxide film structures of different shapes were prepared by controlling the anodization processing time and voltage. These oxide structures were then analyzed using a Field Emission Scanning Electron Microscope (FE-SEM). Afterwards, a Self-Assembled Monolayer (SAM) coating was performed for the oxide structure. The contact angle was measured to determine the relationship between the shape of the oxide film and the water-repellency. The smaller the solid fraction of the surface, the higher the water-repellent effect. The surface with excellent hydrophobic properties showed improved corrosion resistance. Such water-repellent surface has various applications. It is not only useful for corrosion prevention, but also useful for self-cleaning. In addition, a hydrophobic titanium may open up a new world of biomaterials to remove bacteria from the surface.

RESEARCH PAPERS : REMOVAL EFFICIENCY OF THE POLLUTANTS BY MULTILAYERED METAL TREATED CARBON FILTER

  • Oh, Won-Chun;Lee, Ho-Jin;Bae, Jang-Soon
    • Environmental Engineering Research
    • /
    • v.9 no.5
    • /
    • pp.193-200
    • /
    • 2004
  • A study of the treatment of piggery wastes using a multilayered metal-activated carbon system followed by carbon bed filtration was carried out at bench scale. From the physicochemical properties obtained from samples treated with aqueous solutions containing metallic ions such as Ag$^+$, Cu$^{2+}$, Na$^{-}$, K$^+$ and Mn$^{2+}$, main inspections are subjected to isothem shape, pore distribution with micropore, SEM and EDX. Multilayered metal-activated carbons were contacted to waste water to inwestigate the simultaneous catalytic effect for the COD, BOD, T-N and T-P removal. From these removal performance was achieved. The high efficiency of the multilayered metal-activated carbon bed, satisfactory removal performance was achieved. The high efficiency of the multilayered metal-activated carbon bed was derermined by the properties of this material for trapping, catalytic effect and adsorption of organic solid particles.

Stability assessment of soil slopes in three dimensions: The effect of the width of failure and of tension crack

  • Pantelidis, Lysandros;Gravanis, Elias;Gkotsis, Konstantinos-Paraskevas
    • Geomechanics and Engineering
    • /
    • v.22 no.4
    • /
    • pp.319-328
    • /
    • 2020
  • This paper investigates the effect of the width of failure and tension crack (TC) on the stability of cohesive-frictional soil slopes in three dimensions. Working analytically, the slip surface and the tension crack are considered to have spheroid and cylindrical shape respectively, although the case of tension crack having planar, vertical surface is also discussed; the latter was found to return higher safety factor values. Because at the initiation of a purely rotational slide along a spheroid surface no shear forces develop inside the failure mass, the rigid body concept is conveniently used; in this respect, the validity of the rigid body concept is discussed, whilst it is supported by comparison examples. Stability tables are given for fully drained and fully saturated slopes without TC, with non-filled TC as well as with fully-filled TC. Among the main findings is that, the width of failure corresponding to the minimum safety factor value is not always infinite, but it is affected by the triggering factor for failure (e.g., water acting as pore pressures and/or as hydrostatic force in the TC). More specifically, it was found that, when a slope is near its limit equilibrium and under the influence of a triggering factor, the minimum safety factor value corresponds to a near spherical failure mechanism, even if the triggering factor (e.g., pore-water pressures) acts uniformly along the third dimension. Moreover, it was found that, the effect of tension crack is much greater when the stability of slopes is studied in three dimensions; indeed, safety factor values comparable to the 2D case are obtained.

Fabrication of BCP/Silica Scaffolds with Dual-Pore by Combining Fused Deposition Modeling and the Particle Leaching Method (압출 적층 조형법과 입자 추출법을 결합한 이중 공극 BCP/Silica 인공지지체의 제작)

  • Sa, Min-Woo;Kim, Jong Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.10
    • /
    • pp.865-871
    • /
    • 2016
  • In recent years, traditional scaffold fabrication techniques such as gas foaming, salt leaching, sponge replica, and freeze casting in tissue engineering have significantly limited sufficient mechanical property and cell interaction effect due to only random pores. Fused deposition modeling is the most apposite technology for fabricating the 3D scaffolds using the polymeric materials in tissue engineering application. In this study, 3D slurry mould was fabricated with a blended biphasic calcium phosphate (BCP)/Silica/Alginic acid sodium salt slurry in PCL mould and heated for two hours at $100^{\circ}C$ to harden the blended slurry. 3D dual-pore BCP/Silica scaffold, composed of macro pores interconnected with micro pores, was successfully fabricated by sintering at furnace of $1100^{\circ}C$. Surface morphology and 3D shape of dual-pore BCP/Silica scaffold from scanning electron microscopy were observed. Also, the mechanical properties of 3D BCP/Silica scaffold, according to blending ratio of alginic acid sodium salt, were evaluated through compression test.

A Study on Optimum Shape of Shield Gas Nozzle for Bead Shape Control in TIG Welding using Gas Force (II) - Effect of Molten Metal Control by Venturi Nozzle in Overhead Position - (TIG용접에서 가스력을 이용한 비드형상제어를 위한 실드가스 노즐의 최적 형상에 관한 연구 (II) - 벤투리 노즐의 위보기 자세 용융금속제어 효과 -)

  • Ham, Hyo-Sik;Seo, Ji-Seok;Choi, Yoon-Hwan;Lee, Yeon-Won;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.29 no.3
    • /
    • pp.58-63
    • /
    • 2011
  • Bead shape control with gas force process has been developed to overcome the concave back bead in pipe orbital welding. However, It is impossible to make a convex back bead using the existing gas nozzle, because it has high gas-consuming and low gas force. The purpose of this paper, to develop optimum shape of nozzle which to reduce the consumption of gas, maximizing the shield gas force with low cost and high productivity coincide the Green welding. In this paper venturi-type nozzle was compared with existing CP-type nozzle by TIG pulse welding in overhead position. As a result, CP-type occurs the wormholes in the overhead position, but the Venturi-type without the pore and formed a good bead appearance.

A Study on the Behavior of Combustion Wave Propagation and the Structure of Porous TiNi Body during Self-propagating High-temperature Synthesis Process

  • Kim, Ji-Soon;Gjuntera, Victor E.;Kim, Jin-Chun;Kwon, Young-Soon
    • Journal of Powder Materials
    • /
    • v.17 no.1
    • /
    • pp.29-35
    • /
    • 2010
  • We produced cylindrical porous TiNi bodies by Self-propagating High-temperature Synthesis (SHS) process, varying the heating schedule prior to ignition of a loose preform compact made from (Ti+Ni) powder mixture. To investigate the effect of the heating schedule on the behaviour of combustion wave propagation and the structure of porous TiNi shape-memory alloy (SMA) body, change of temperature in the compact during SHS process was measured as a function of time and used for determining combustion temperature and combustion wave velocity. Microstructure of produced porous TiNi SMA body was observed and the results were discussed with the combustion characteristics. From the results it was concluded that the final average pore size could be controlled either by the combustion wave velocity or by the average temperature of the preform compact prior to ignition.