• Title/Summary/Keyword: pore pressure gradient

Search Result 26, Processing Time 0.021 seconds

Evaluation on the Effect of Relief Wells by 3D Numerical Analysis on the Embankment of an Agricultural Reservoir (농업용 저수지 제방에서 3차원 수치해석에 의한 감압정의 효과 분석)

  • Ryu, Jeon-Yong;Heo, Joon;Chang, Yong-Chai
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.119-129
    • /
    • 2020
  • Through 3D seepage analysis of pressure relief well installed on the embankment of agricultural reservoir, the effects of reducing pore water pressure and hydraulic gradient, and increasing piping safety, depending on diameter (0.2, 0.4, 0.6 m) and space (10, 25, 50 m) of relief well, were analyzed. The conclusions drawn through this study are as follows. i) At the location of pressure relief well, pore water pressure decreases by 25.3~62.5%, and hydraulic gradient decreases by 22.4~55.7%. ii) Between relief wells, pore water pressure decreases by 2.7~40.3%, and hydraulic gradient decreases by 2.8~47.0%, which are relatively less than at the cross section of installed location of relief well. iii) Piping safety factor by critical hydraulic gradient increases by 28.9~125.6% at the location of relief well and increases by 2.9~88.8% between relief wells. iv) Seepage analysis needs to be performed by the 3D method to make evaluation of seepage at the location of relief well and between relief wells possible. v) Additional evaluation is required for various conditions such as waterhead, engineering characteristics of embankment body and its foundation, location, diameter, spacing and depth of pressure relief well.

Effect of Heating Rate and Pressure on Pore Growth of Porous Carbon Materials

  • Cho, Kwang-Youn;Kim, Kyong-Ja;Riu, Doh-Hyung
    • Carbon letters
    • /
    • v.7 no.4
    • /
    • pp.271-276
    • /
    • 2006
  • Porous carbon materials were prepared with a thermal treatment of coal tar pitch at 550 in the Ar gas. Growth, merger, and distribution of pore were characterized with scanning electron microscopy as variation ascending temperature gradient and chamber pressure. After graphitizing at the 2600 (1 hr.), walls and connecting parts between pores were investigated with X-ray diffraction patterns. Wall thickness and pore size decreases as increasing ascending temperature gradient, and pore size becomes homogeneous. Graphite quality and thermal conductivity become higher due to the enhanced orientation of walls and connecting parts between pores.

  • PDF

Seepage Characteristics of Agricultural Reservoir Embankment Considering Filter Interval (필터간격을 고려한 농업용저수지 제체의 침투특성)

  • Lee, Young Hak;Lee, Dal Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • This study analyzed pore water pressure, seepage and leakage quantity, height of seepage and critical hydraulic gradient in order to suggest the seepage characteristics of agricultural reservoir embankment considering filter interval. The seepage characteristics of a deteriorated reservoir embankments were conducted according to the horizontal filter intervals range using three- dimensional finite element analysis. The wider the horizontal filter interval, the higher the pore water pressure increased, and the pore water pressure ratio in the center of the core has a greater effect than the base part. The seepage and leakage quantity appeared largely in the two-dimensional analysis conditions (case 1), where the filter was constructed totally in the longitudinal direction of the embankment, the wider the horizontal filter interval was gradually reduced. The reasonable filter intervals to yield efficient seepage characteristics were within 30 m for the pore water pressure of the core and the height of the seepage line. The stability of the filter installation was able to evaluate the stability of the piping by the critical hydraulic gradient method. The deteriorated reservoir with no filters or decreased functionality can significantly reduce the possibility of piping by simply installing a filter on the downstream slope. In the future, the deteriorated reservoir embankment should be checked for the reservoir remodeling because the core and filter functions have been lost or decreased significantly. In the case of a new installation, the seepage characteristic behavior due to the core and filter changes should be applied to the field after obtaining a reasonable horizontal filter interval that satisfies the safety factor by a three-dimensional analysis.

Behaviour of the Excess Pore Pressure Induced by Sand Mat on the Soft Clay (점토지반 샌드매트의 간극수압 거동)

  • Kim, Hyeong-Joo;Lee, Min-Sun;Paek, Pil-Soon;Jeon, Hye-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.55-62
    • /
    • 2006
  • The design of sand mat should be reviewed by the behaviour of excess pore pressure which is obtained by combining characteristics of soft ground with the permeability of sand mat. In this paper, in order to investigate the distribution of hydraulic gradient of sand mat, a banking model test was performed using dredged sand as materials of sand mat, and these results were compared by the numerical analysis results utilizing Terzaghi's consolidation equation. The results show that the pore pressure was influenced by the settlement increasing in the central area of sand mat as the height of embankment increases, and uprising speed of excess pore pressure due to residing water pressure is delayed compared with the results of numerical analysis. Finally, the construction of sand mat should be spreaded to reduce the increased hydraulic gradient at the central area of embankment.

Limit analysis of rectangular cavity subjected to seepage forces based on Hoek-Brown failure criterion

  • Yang, X.L.;Qin, C.B.
    • Geomechanics and Engineering
    • /
    • v.6 no.5
    • /
    • pp.503-515
    • /
    • 2014
  • On the basis of Hoek-Brown failure criterion, a numerical solution for the shape of collapsing block in the rectangular cavity subjected to seepage forces is obtained by upper bound theorem of limit analysis. The seepage forces obtained from the gradient of excess pore pressure distribution are taken as external loadings in the limit analysis, and the pore pressure is easily calculated with pore pressure coefficient. Thus the seepage force is incorporated into the upper bound analysis as a work rate of external force. The upper solution of the shape of collapsing block is derived by virtue of variational calculation. In order to verify the validity of the method proposed in the paper, the result when the pore pressure coefficient equals zero, and only hydrostatic pressure is taken into consideration, is compared with that of previous work. The results show good effectiveness in calculating the collapsing block shape subjected to seepage forces. The influence of parameters on the failure mechanisms is investigated.

Shear infiltration and constant water content tests on unsaturated soils

  • Rasool, Ali Murtaza;Aziz, Mubashir
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.435-445
    • /
    • 2019
  • A series of element tests with different drainage conditions and strain rates were performed on compacted unsaturated non-plastic silt in unconfined conditions. Soil samples were compacted at water contents from dry to wet of optimum with the degree of saturation varying from 24 to 59.5% while maintaining the degree of compaction at 80%. The tests performed were shear infiltration tests in which specimens had constant net confining pressure, pore air pressure was kept drained and constant, just before the shear process pore water pressure was increased (and kept constant afterwards) to decrease matric suction and to start water infiltration. In constant water content tests, specimens had constant net confining pressure, pore air pressure was kept drained and constant whereas pore water pressure was kept undrained. As a result, the matric suction varied with increase in axial strain throughout the shearing process. In both cases, maximum shear strength was obtained for specimens prepared on dry side of optimum moisture content. Moreover, the gradient of stress path was not affected under different strain rates whereas the intercept of failure was changed due to the drainage conditions implied in this study.

Analysis of the Behavior of Undrained Pore Water Pressure in Saturated Sand by Isotropic Loading Test (포화된 사질토에서 등방재하시험에 의한 비배수 공극수압의 거동분석)

  • Eam, Sung-Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.4
    • /
    • pp.43-52
    • /
    • 2005
  • It is known in some literatures that the B value is not equal to unity in saturated soil when effective stress is given, in which the B Value is the ratio of measured excess pore water pressure and isometric loading pressure. In this study the B value was measured on various effective stresses and on various incremental loading stresses in various grain size of specimens with saturated sand. The test results showed that the B value was affected largely by grain size of sand in specimen and the amount of effective stress. There was the semi-logarithmic relationship between B value and effective stress, and also there was the linear relationship between the gradient of the former semi-logarithmic relationship and grain size of specimen.

Determination Method of Suitable Mud Density While Drilling through Confined Aquifer and Its Application (피압대수층을 통과하는 대심도 시추 중 적정이수밀도 결정 방법 및 적용 사례)

  • Woon Sang Yoon;Yoosung Kim;Hyeongjin Jeon;Yoonho Song;Changhyun Lee
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.217-228
    • /
    • 2024
  • During deep drilling, confined aquifers can present various challenges such as the inability to remove cuttings, rapid groundwater influx, and mud loss. Particularly in flowing well conditions, it is essential to apply the suitable mud density since the aquifer can generates an overpressurized condition. This paper proposes a method for determining the suitable mud density while drilling (SMD) through confined aquifers using mud window analysis and applies it to a case study. The minimum mud density at each depth, which represents the lower limit of the mud window, is determined by the equivalent mud density pore pressure gradient (or by adding a trip margin) at that depth. The pore pressure gradient of a confined aquifer can be calculated using the piezometric level or well head pressure of the aquifer. As the borehole reaches the confined aquifer, there is a significant increase in pore pressure gradient, which gradually decreases with increasing depth. The SMD to prevent a kick can be determined as the maximum value among the minimum mud densities in the open hole section. After entering the confined aquifer, SMD is maintained as the minimum mud density at the top of the aquifer during the drilling of the open hole section. Additionally, appropriate casing installation can reduce the SMD, minimizing the risk of mud loss or invasion into the highly permeable aquifer.

Safety Evaluation of Agricultural Reservoirs due to Raising Embankment by Field Monitoring and Numerical Analysis (현장계측과 수치해석에 의한 농업용저수지 제체의 안정성 평가)

  • Lee, Kwang Sol;Lee, Dal Won;Lee, Young Hak
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.2
    • /
    • pp.31-44
    • /
    • 2016
  • This study analyzed pore water pressure, earth pressure and settlement through field monitoring on the project site in which raising embankments are being built through backside extension, and compared the behaviors of seepage analysis, slope stability analysis and stress-strain during flood water levels and rapid drawdown under steady state and transient condition. The variation of pore water pressure showed an increase during the later period in both upstream and downstream slope, with downstream slope more largely increased than upstream slope overall. The variation of earth pressure increased according to the increase of embankment heights, while the change largely showed in the upstream slope, it was slowly increased in the downstream slope. The settlements largely increased until 23 m as embankment heights increased, and showed very little settlement overall. Under a steady state and transient conditions, the seepage quantity per day and leakage quantity per 100 m of embankment against total storage were shown to be stable for piping. The hydraulic gradient at the core before and after raising embankments was greater than the limit hydraulic gradient, showing instability for piping. The safety factor of upstream and downstream slopes were shown to be very large at a steady state, while the upstream slopes greatly decreased at a transit conditions, downstream slopes did not show any significant changes. The horizontal settlements, the maximum shear strain and stress are especially distributed at the connecting portion of the existing reservoir and the new extension of backside. Accordingly, the backside extension method should be designed and reinforced differently from the cases of other types reservoirs.

Mechanisms of Gas Permeation through Microporous Membranes - A Review (미세 다공막을 통한 기체 투과기구)

  • 황선탁
    • Membrane Journal
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 1997
  • A review is presented for various gas transport mechanisms through microporous membranes of both polymeric and inorganic materials. Different transport modes manifest depending on the pore size and the flow regime, which is a function of pressure, temperature, and the interaction between gas molecules and the pore walls. For microporous membranes whose pores are small and the internal surface area huge, the surface diffusion becomes a significant factor. If the pores become even smaller, then the transport mechanism will be more of an activated diffusion type. When conditions are right capillary condensation will take place to create an enormous capillary pressure gradient, which will greatly enhance the permeation flux. At the same time the capillary condensate of the heavier component may block the membrane pores denying the passage of the lighter gas molecules. All of these phenomena will influence the separation of mixtures.

  • PDF