• 제목/요약/키워드: pore blocking resistance

검색결과 13건 처리시간 0.021초

Permeation Characteristics of Wastewater Containing Si Fine Particles through Ultrafiltration

  • Park, Ho-Sang;Park, Young-Tae;Lee, Seok-Ki
    • Korean Membrane Journal
    • /
    • 제5권1호
    • /
    • pp.31-35
    • /
    • 2003
  • The permeation characteristics of the wastewater containing Si fine particles were examined by ultrafiltration using the polyolefin tubular membrane module. Flux with time was due to the growth of Si cake deposited on the membrane surface and the pore plugging by fine particles. The rate of flux decline in the initial stage increased with the trans-membrane pressure. The pore blocking resistance was the dominant resistance at the initial period of filtration and the cake resistance began to dominate with the initial pore blocking resistance. The larger pores compared with the fine particles, the more the membrane pores could be blocked by the fine particles. Before and after treatment, the distribution of particle size was shifted toward to the left. Then, the average size of fine particles in the permeate was 20 nm.

회분식 막여과 시스템에서 약품역세가 여과성능에 미치는 영향 (The Effect of Chemical Backwash on Filtration Performance of Batch Membrane Filtration System)

  • 김관엽;이의종;권진섭;김형수
    • 상하수도학회지
    • /
    • 제23권6호
    • /
    • pp.855-864
    • /
    • 2009
  • The main object of this work was to determine the influence of periodic chemical backwash on filtration resistance in membrane filtration system. In this work Hermia's models were used to investigate the fouling mechanisms involved in the microfiltration of $0.45{\mu}m$ filtered sewage feed. Batch microfiltration experiments were performed at transmembrane pressure 0.4 bar and different feed SCOD concentration (9~67 mgSCOD/L). The results showed that the best fit to experimental data corresponded to the intermediate blocking model followed by the standard and complete blocking model for all the experimental conditions tested. From the simulation results of filtration performance, it was found that in order to maintain sustainable operation of membrane filtration system, irreversible foulant component accumulated continuously on membrane surface and/or pore must be effectively removed. In addition, it was verified that periodic chemical backwash using NaOCl or NaOH effectively improved filtration performance of membrane.

알루미나 현탁액에 의해 오염된 정밀여과막의 역세척 거동 (Back Flushing Behavior of Microfiltration Membrane Fouled by Alumna Colloidal Suspensions)

  • 남석태;한명진
    • 멤브레인
    • /
    • 제19권1호
    • /
    • pp.34-46
    • /
    • 2009
  • $Al_2O_3$ 현탁액의 폴리에틸렌 정밀여과에 있어 역세척이 막오염에 미치는 영향에 대하여 분석하였다. 현탁액의 투과저항은 역세척을 한 경우가 역세척을 하지 않은 경우보다 작았으나 투과저항 증가율은 역세척을 하지 않은 때보다도 더 컸다. 막오염 형태는 역세척을 한 경우나 하지 않은 경우 운전초기에는 케익오염이 지배적이었으며, 이어 세공막힘오염이 나타났고, 정상상태에 도달하면 투과유속은 다시 케익여과 오염에 의해 지배받는 것으로 나타났다. 한편, 세척공정에 앞선 막은 운전초기에 세공막힘오염이 케익오염에 앞서 일어났다. 총오염에 대한 케익여과 오염의 비율은 역세척에 관계없이 역세척 전에 비하여 증가하였다. 세공크기가 $0.24{\mu}m$인 막의 투과저항은 세공이 $0.34{\mu}m$인 막에 비해 더 컸으나, 막오염 형태는 세공의 크기가 $0.34{\mu}m$인 막에 비해 케익오염이 작았다. 총오염에 대한 성분오염의 비율은 역세척을 한 경우에는 세공막힘이 약 7.8%, 케익오염 약 92.2%이었고, 역세척을 하지 않은 경우에는 세공막힘은 9.6% 그리고 케익오염이 90.4%이었다.

Ultrafiltration of oil-in-water emulsion: Analysis of fouling mechanism

  • Chakrabarty, B.;Ghoshal, A.K.;Purkait, M.K.
    • Membrane and Water Treatment
    • /
    • 제1권4호
    • /
    • pp.297-316
    • /
    • 2010
  • Membrane fouling is one of the major operational concerns of membrane processes which results in loss of productivity. This paper investigates the ultrafiltration (UF) results of synthetic oil-in-water (o/w) emulsion using flat sheets of polysulfone (PSf) membrane synthesized with four different compositions. The aim is to identify the mechanisms responsible for the observed permeate flux reduction with time for different PSf membranes. The experiments were carried out at four transmembrane pressures i.e., 68.9 kPa, 103.4 kPa, 137.9 kPa and 172.4 kPa. Three initial oil concentrations i.e., 75 $mgL^{-1}$, 100 $mgL^{-1}$ and 200 $mgL^{-1}$ were considered. The resistance-in-series (RIS) model was applied to interpret the data and on that basis, the individual resistances were evaluated. The significances of these resistances were studied in relation to parameters, namely, transmembrane pressure and initial oil concentration. The total resistance to permeate flow is found to increase with increase in both transmembrane pressure and initial oil concentration while for higher oil concentration, resistance due to concentration polarization is found to be the prevailing resistance. The applicability of the constant pressure filtration models to the experimental data was also tested to explain the blocking process. The study shows that intermediate pore blocking is the dominant mechanism at the initial period of UF while in the later period, the fouling process is found to approach cake filtration like mechanism. However, the duration of pore blocking mechanism is different for different membranes depending on their morphological and permeation properties.

FLUX DECLINE DURING THE ULTRA-FILTRATION OF DILUTE SI COLLOIDAL SOLUTION WITH HOLLOW FIBER MEMBRANE

  • Park, Ho-Sang;Nam, Suk-Tae;Jeon, Jae-Hong;Lee, Seok-Ki
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1999년도 The 7th Summer Workshop of the Membrane Society of Korea
    • /
    • pp.95-96
    • /
    • 1999
  • The ultrafiltration behavior of dilute colloidal solution containing Si particles has been investigated. The experiments in cross flow mode have been performed at different operating condition by using the membrane with 20 kDa cut-off. The flux decline was due to the development of membrane fouling which was a dynamic process of two distinctive stages. For the high trans-membrane pressure, the pore blocking resistance was dominant at the initial period of filtraion and was followed by the cake resistance. And for the low cross flow velocity, the membrane fouling was governed by the cake filtration model at the initial stage of filtration process. Flux jump was observed temporally during the membrane filtration of mixed feed solution.

  • PDF

테일러 와류 정밀여과에서 막오염의 실험적 연구 및 모델링 (Experimental Study and Modelling on Membrane Fouling in Taylor Vortex Flow Microfiltration)

  • 박진용;김현우;최창균
    • 멤브레인
    • /
    • 제13권2호
    • /
    • pp.88-100
    • /
    • 2003
  • 테일러 와류흐름 여과에서 평균기공 1.2 ${\mu}m$인 셀룰로우스 에스테르 정밀막으로 이루어진 내부원통의 회전속도와 슬러리의 농도, 입자의 크기에 따른 여과선속의 변화를 실험을 통하여 알아보았다. 여과선속은 압력차에 비례하고 저항에 반비례하였으며, 시간에 따른 케이크 층의 저항 변화를 회전속도, 슬러리의 농도, 입자의 크기에 따라 검토하였다. 회전속도가 증가할수록 케이크 저항이 감소하고 짧은 시간에 준정상 상태에 도달하였다 슬러리의 농도를 증가시킬수록 초기 저항이 급격히 증가하였고 높은 저항값에서 준정상 상태가 유지되었으나, 준정상 상태에 도달하는 시간은 농도에 무관하였다. 입자 크기가 작을 때 저항이 크게 나타남을 관찰하였는데, 입자 크기가 작을수록 막 기공을 막을 확률이 더 높고 전단력에 의해 영향을 덜 받기 때문이라 생각할 수 있다. 본 연구에서 제안한 모델식은 입자의 퇴적과 제거항으로 나누어져 있는데, 실험상수의 평균값을 사용하여 실험결과와 잘 일치하였다.

THE EFFECT OF AIR BUBBLES FROM DISSOLVED GASES ON THE MEMBRANE FOULING IN THE HOLLOW FIBER SUBMERGED MEMBRANE BIO-REACTOR (SMBR)

  • Jang, Nam-Jung;Yeo, Young-Hyun;Hwang, Moon-Hyun;Vigneswaran, Saravanamuthu;Cho, Jae-Weon;Kim, In S.
    • Environmental Engineering Research
    • /
    • 제11권2호
    • /
    • pp.91-98
    • /
    • 2006
  • There is a possibility of the production of the air bubbles in membrane pores due to the reduction in pressure during membrane filtration. The effect of fine air bubbles from dissolved gases on microfiltration was investigated in the submerged membrane bio-reactor (SMBR). The $R_{air}$ (air bubble resistance) was defined as the filtration resistance due to the air bubbles formed from the gasification of dissolved gases. From the results of filtration tests using pure water with changes in the dissolved oxygen concentration, the air bubbles from dissolved gases were confirmed to act as a foulant and; thus, increase the filtration resistance. The standard pore blocking and cake filtration models, SPBM and CFM, respectively, were applied to investigate the mechanism of air bubble fouling on a hollow fiber membrane. However, the application of the SPBM and CFM were limited in explaining the mechanism due to the properties of air bubble. With a simple comparison of the different filtration resistances, the $R_{air}$ portion was below 1% of the total filtration resistance during sludge filtration. Therefore, the air bubbles from dissolved gases would only be a minor foulant in the SMBR. However, under the conditions of a high gasification rate from dissolved gases, the effect of air bubble fouling should be considered in microfiltration.

Fouling behaviours of two stages microalgae/membrane filtration system applied to palm oil mill effluent treatment

  • Teow, Yeit Haan;Wong, Zhong Huo;Takriff, Mohd Sobri;Mohammad, Abdul Wahab
    • Membrane and Water Treatment
    • /
    • 제9권5호
    • /
    • pp.373-383
    • /
    • 2018
  • Fouling by solids and microorganisms is the major obstacle limiting the efficient use of membrane wastewater treatment. In our previous study, two stages microalgae/membrane filtration system was proposed to treat anaerobic digested palm oil mill effluent (AnPOME). This two stages microalgae/membrane filtration system had showed great potential for the treatment of AnPOME with high removal of COD, $NH_3-N$, $PO_4{^{3-}}$, TSS, turbidity, and colour. However, fouling behavior of the membrane in this two stages microalgae/membrane filtration system was still unknown. In this study, empirical models that describe permeate flux decline for dead-end filtration (pore blocking - complete, intermediate, and standard; and cake layer formation) presented by Hermia were used to fit the experimental results in identifying the fouling mechanism under different experimental conditions. Both centrifuged and non-centrifuged samples were taken from the medium with 3 days RT intervals, from day 0 to day 12 to study their influence on fouling mechanisms described by Hermia for ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO) filtration mode. Besides, a more detailed study on the use of resistance-in-series model for deadend filtration was done to investigate the fouling mechanisms involved in membrane filtration of AnPOME collected after microalgae treatment. The results showed that fouling of UF and NF membrane was mainly caused by cake layer formation and it was also supported by the analysis for resistance-in-series model. Whereas, fouling of RO membrane was dominated by concentration polarization.

Si 입자를 함유한 반도체 세정폐수의 한외여과 특성 [II] -Polyolefin 관형막에 의한 투과분리- (Permeation Behavior of Semiconductor Rinsing Wastewater Containing Si Particles in Ultrafiltration System -II. Permeation Characteristics of Tubular Membrane)

  • 남석태;여호택;전재홍;이석기;최호상
    • 멤브레인
    • /
    • 제9권1호
    • /
    • pp.36-42
    • /
    • 1999
  • 본 연구에서는 Si 미립자를 함유한 반도체 세정폐수의 관형막을 이용한 한외여과특성을 검토하였다. 관형막의 시간변화에 따른 투과유속의 감소현상은 막표면에 형성된 케익층의 증가 및 기공막힘에 기인하며, cross flow는 케익여과에 의한 막오염 형태를 보였으나 dead-end flow는 기공막힘과 케익여과에 의한 혼합형태를 보였다. Cross Flow의 케익저항의 크기는 3.16$\times$$10^{12}$ ~4.34$\times$$10^{12}$ $m^{-1}$ 였고, dead-end flow 는 6.6 $\times$$10^{12}$ ~12.19$\times$$10^{12}$ $m^{-1}$였다. 운전초기의 흐름형태에 따른 투과유속은 cross flow 가 dead-end flow 의 약 7 배였다. Cross flow 투과유속은 약 42 $\ell$/$m^2$ hr, 용질배제율은 약 96 % 였으며, 분리막공정을 거친 투과수 중의 Si 입자의 평균크기는 20nm였다.

  • PDF

Effect of solids retention time on membrane fouling in membrane bioreactors at a constant mixed liquor suspended solids concentration

  • Hao, L.;Liss, S.N.;Liao, B.Q.
    • Membrane and Water Treatment
    • /
    • 제8권4호
    • /
    • pp.337-353
    • /
    • 2017
  • Membrane fouling at different solids retention times (SRT) (7, 12 and 20 days) was studied under well-controlled conditions in a laboratory-scale aerobic submerged membrane bioreactor under constant biomass concentration using a synthetic high strength wastewater. An increase in SRT was found to improve membrane performance and this correlated to changes in the total production of bound extracellular polymeric substances (EPS), and the composition and properties of bound EPS using X-ray photoelectron spectroscopy (XPS) and Fourier transform-infrared spectroscopy (FTIR) and floc sizes. A larger amount of total bound EPS was found at the lowest SRT (7 days) tested but the ratio of proteins (PN) to carbohydrates (CH) in bound EPS increased with an increase in SRT. Similarly, the quantity of soluble microbial products (SMP) decreased with an increase in SRT and the SMP PN/CH ratio increased with an increase in SRT. SMP concentrations positively correlated to the percentage of membrane pore blocking resistance. The quantity of total bound EPS and total SMP positively corresponded to the membrane fouling rate, while the PN/CH ratio in the bound EPS and SMP negatively correlated to the membrane fouling rate. The results show that both the quantity and composition of bound EPS and SMP and floc sizes are important in controlling membrane fouling.