• Title/Summary/Keyword: pore blocking

Search Result 80, Processing Time 0.025 seconds

Change of Chemical Properties and Nutrient Dynamic in Pore Water of Upland Soil During Flooding (담수에 의한 밭 토양 공극수의 화학적 특성 및 영양분 농도 변화)

  • Kim, Jae-Gon;Chon, Chul-Min;Lee, Jin-Soo
    • Economic and Environmental Geology
    • /
    • v.41 no.3
    • /
    • pp.327-334
    • /
    • 2008
  • Understanding the chemical characteristics of sediments and the nutrient diffusion from sediments to the water body is important in the management of surface water quality. Changes in chemical properties and nutrient concentration of a submerged soil were monitored for 6 months using a microcosm with the thickness of 30cm for upland soil and 15cm of water thickness above the soil. The soil color changed from yellowish red to grey and an oxygenated layer was formed on the soil surface after 5 week flooding. The redox potential and the pH of the pore water in the microcosm decreased during the flooding. The nitrate concentration of the surface water was continuously increased up to $8\;mg\;l^{-1}$ but its phosphate concentration decreased from $2\;mg\;l^{-1}$ to $0.1\;mg\;l^{-1}$ during flooding. However, the concentrations of $NH_4^+$, $PO_4^{3-}$, Fe and Mn in the pore water were increased by the flooding during this period. The increased $NO_3^-$ in the surface water was due to the migration of $NH_4^+$ formed in the soil column and the oxidation to $NO_3^-$ in the surface water. The increased phosphate concentration in the pore water was due to the reductive dissolution of Fe-oxide and Mn-oxide, which scavenged phosphate from the soil solution. The oxygenated layer played a role blocking the migration of phosphate from the pore water to the water body.

Visualization of two-phae flow by using transparent Proton Exchange Membrane Fuel Cell (고분자 전해질 연료전지 가시화 장치를 이용한 이상유동 현상 관찰)

  • Lee, Dong-Ryul;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.374-377
    • /
    • 2009
  • The operating temperature of Proton Exchange Membrane Fuel Cell (PEMFC) usually has to be limited under $100^{\circ}C$ to maintain the proper ionic conductivity. Therefore, the only product from reaction, water, is in the liquid phase. Two-phase flow makes the flow phenomenon in the channel difficult to understand and predict. Water blocking in the PEMFC channel or the pore of Gas Diffusion Layer (GDL), called flooding, is known as the main effect of PEMFC degradation. To analyze two-phase flow, the PEMFC with transparent acrylic plate was used. Two-phase flow patterns were observed by varying the current density. When the PEMFC is mounted horizontally, water in the cathode is mainly transported on the interface between the channel and GDL.

  • PDF

Fouling evaluation on nanofiltration for concentrating phenolic and flavonoid compounds in propolis extract

  • Leo, C.P.;Yeo, K.L.;Lease, Y.;Derek, C.J.C.
    • Membrane and Water Treatment
    • /
    • v.7 no.4
    • /
    • pp.327-339
    • /
    • 2016
  • Nanofiltration is useful to concentrate propolis extract. During the selection of membrane, both compound rejection and permeate flux are important indicators of process economy. Brazilian green propolis extract was studied to evaluate the separation performance of Startmen 122 and NF270 membranes. Compared to Starmen 122, NF270 membrane showed better rejection of bioactive compounds. The flux decline patterns were further studied using Hermia's model. Cake formation is the major fouling mechanism on the hydrophobic surface of Starmen 122. While the fouling mechanism for NF270 is pore blocking. The fouled membranes were further characterized using SEM and FT-IR to confirm on the predicted fouling mechanisms.

Behavior of double lining due to long-term hydraulic deterioration of drainage system

  • Shin, Jong-Ho;Lee, In-Keun;Joo, Eun-Jung
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1257-1271
    • /
    • 2014
  • The hydraulic deterioration of the drainage system in tunnel linings is one of the main factors governing long-term lining-ground interactions during the lifetime of tunnels. Thus, in the design procedure of a tunnel below the groundwater table, the possible detrimental effects associated with the hydraulic deterioration should be addressed. Hydraulic deterioration in double-lined tunnels can occur because of reasons such as clogging of the drainage layer and drain-pipe blockings. In this study, the coupled mechanical and hydraulic interactions between linings due to drain-pipe blockings are investigated using the finite-element method. A double-lined structural model incorporating hydraulic behavior is developed to represent the coupled structural and hydraulic behavior between the linings and drainage system. It is found that hydraulic deterioration hinders flow into the tunnel, causing asymmetric development of pore-water pressure and consequent detrimental effects to the secondary lining.

Development of Porous Sorbents for Removal of Hydrogen Sulfide from Hot Coal Gas -II. Kinetics of Suffidation on Zinc Oxide - (고온석탄가스에서 황화물을 제거하기 위한 다공성 흡착제의 개발 -II. 산화아연의 황화반응에 관한 연구-)

  • 서인식;이재복;류경옥
    • Journal of Environmental Health Sciences
    • /
    • v.14 no.1
    • /
    • pp.11-22
    • /
    • 1988
  • Calcium oxide, lithium oxide and titanium oxide were investigated as additives of zinc oxide for the removal of hydrogen sulfide at high temperature. This experiment was performed in the range of 1.0-2.0 vol.% H$_2$S concentration at 623-873 K reaction temperature, using a thermogravimetric analyzer. A pore blocking model was found to fit the reaction rate and the kinetics data were sucessfully expressed by this model. The reactions between additive sorbents and hydrogen sulfide were first order with respect to hydrogen sulfide concentration in a gaseous mixture with nitrogen. Among the used sorbents, ZnO-CaO 0.5 at.% and ZnO-TiO$_2$ 2.0 at.% sorbents had the best additive effects on the sulfidation reaction between additive sorbents and hydrogen sulfide, whereas the ZnO-Li$_2$O sorbents were ineffective.

  • PDF

A Case of Engorged Female Hard Tick in the External Auditory Canal of an Infant

  • Sung, Woo-Jung;Kim, Yee-Hyuk
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.5
    • /
    • pp.565-568
    • /
    • 2017
  • An oval-shaped mass with a smooth surface was found in the ear canal of a 22-month-old male infant. Although the mass appeared to be almost entirely blocking the ear canal, it was successfully removed under a surgical microscope without general anesthesia at the outpatient department. Under an optical microscope with hematoxylin and eosin staining, the specimen was observed to have a cuticle with a serrated surface and a pore canal, as well as parts of the capitulum, salivary glands, muscles, midgut, and the legs. The specimen was identified as a hard tick of the family Ixodidae, based on gross and histological findings. This paper is the first report in Korea on the diagnosis and treatment of a tick bite in the ear canal.

Hydrophilic Modification of Polypropylene Hollow Fiber Membrane by Dip Coating, UV Irradiation and Plasma Treatment

  • Kim Hyun-Il;Kim Jin Ho;Kim Sung Soo
    • Korean Membrane Journal
    • /
    • v.7 no.1
    • /
    • pp.19-27
    • /
    • 2005
  • PP hollow fiber membrane was hydrophilized by EVOH dip coating followed by low temperature plasma treatment and UV irradiation. EVOH coating attained high water flux without any prewetting but its stability did not guaranteed at high water permeation rate. At high water permeation rate, water flux declined gradually due to swelling and delamination of the EVOH coating layer causing pore blocking effect. However, plasma treatment reduces the swelling, which suppress delamination of the EVOH coating layer from PP support result in relieving the flux decline. Also, UV irradiation helped the crosslinking of the EVOH coating layer to enhance the performance at low water permeation rate. FT-IR and ESCA analyses reveal that EVOH dip coating performed homogeneously through not only membrane surface but also matrix. Thermogram of EVOH film modified plasma treatment and W irradiation show that crosslinking density of EVOH layer increased. Chemical modification by plasma treatment and UV irradiation stabilized the hydrophilic coating layer to increase the critical flux of the submerged membrane.

Hydrogen Storage Behaviors of Porous Carbons

  • Kim, Byung-Joo;An, Kay-Hyeok;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.230-230
    • /
    • 2009
  • In this work, Porous Carbons (PCs) were prepared by using a chemical acid treatment, and the hydrogen storage behaviors of PCs doped by Pt nanoparticles were investigated. The hydrogen storage capacities of the Pt-doped carbons with a platinum content of 0.2 - 1.5 wt.% were evaluated by a volumetric adsorption method at 298K and 10 MPa. The microstructures of samples were examined by XRD and SEM. It was found that the hydrogen storage capacitiesof the PCs dramatically increased, but the amount of hydrogen stored from the samples began to decrease after 0.6 wt.% of Pt content due to the pore blocking. These results indicate that a suitable amount of supported catalysts and layer intervals of carbons had a very important impact on hydrogen storage behaviors.

  • PDF

Identification of Inhibitors Against BAK Pore Formation using an Improved in vitro Assay System

  • Song, Seong-Soo;Lee, Won-Kyu;Aluvila, Sreevidya;Oh, Kyoung Joon;Yu, Yeon Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.419-424
    • /
    • 2014
  • The pro-apoptotic BCL-2 family protein BID activates BAK and/or BAX, which form oligomeric pores in the mitochondrial outer membrane. This results in the release of cytochrome c into the cytoplasm, initiating the apoptotic cascade. Here, we utilized liposomes encapsulating sulfo-rhodamine at a controlled temperature to improve upon a previously reported assay system with enhanced sensitivity and specificity for measuring membrane permeabilization by BID-dependent BAK activation. BAK activation was inhibited by BCL-$X_L$ protein but not by a mutant protein with impaired anti-apoptotic activity. With the assay system, we screened a chemical library and identified several compounds including trifluoperazine, a mitochondrial apoptosis-induced channel blocker. It inhibited BAK activation by direct binding to BAK and blocking the oligomerization of BAK.

FLUX DECLINE DURING THE ULTRA-FILTRATION OF DILUTE SI COLLOIDAL SOLUTION WITH HOLLOW FIBER MEMBRANE

  • Park, Ho-Sang;Nam, Suk-Tae;Jeon, Jae-Hong;Lee, Seok-Ki
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.95-96
    • /
    • 1999
  • The ultrafiltration behavior of dilute colloidal solution containing Si particles has been investigated. The experiments in cross flow mode have been performed at different operating condition by using the membrane with 20 kDa cut-off. The flux decline was due to the development of membrane fouling which was a dynamic process of two distinctive stages. For the high trans-membrane pressure, the pore blocking resistance was dominant at the initial period of filtraion and was followed by the cake resistance. And for the low cross flow velocity, the membrane fouling was governed by the cake filtration model at the initial stage of filtration process. Flux jump was observed temporally during the membrane filtration of mixed feed solution.

  • PDF