• 제목/요약/키워드: pore area and volume

검색결과 389건 처리시간 0.026초

중.소형 폐기물소각로 및 배연탈황공정용 홍합(Hard-Shelled Mussel) 패각페기물 Sorbent 적용에 관한 연구 (A Study on Sorbent Application of Hard-Shelled Mussel Waste Shell on the Medium/small Scale Waste Incinerator and Flue Gas Desulfurization Process)

  • 정종현
    • 한국환경보건학회지
    • /
    • 제29권1호
    • /
    • pp.34-42
    • /
    • 2003
  • The objective of this study is to investigate the waste recycling possibility, practicability, economic efficiency and acid gas sorbent use of the hard-shelled mussel. This study is to investigate the hydration/calcination reaction and fixed bed reactor. The physical-chemical characteristics of the hard-shelled mussel were analyzed by ICP SEM-EDX, BET and pore volume. Thus, the results could be summarized as follows; Hard-shelled mussel can be used as iron-manufacture and chemical sorbents considering more than 53.7% of the mussel is lime content. The SO$_2$removal efficiency of the hard-shelled mussel after calcined hydration increased thirty times as a result of the higher pore size, specific surface area and pore volume. Also, the CaO content, pore volume, pore size distribution and specific surface area greatly influenced the SO$_2$ and NOx removal reactivity. The optimum particle diameter average of hard-shelled mussel was $\pm$100 mesh, which was applied to the sorbent on the medium/small scale waste incinerator and flue gas desulfurization processes.

소성과 황화반응에 따른 생석회의 비표면적 및 기공구조 변화 (Specific Surface Area and Pore Structure Changes of Calcined Lime with Calcination and Sulfation Reaction)

  • 강순국;정명규
    • 환경위생공학
    • /
    • 제13권3호
    • /
    • pp.19-29
    • /
    • 1998
  • The calcination reactivity of limestone and physical property changes of calcined lime were investigated with a temperature($720~1000^{\circ}C$ under atmospheric gas($N_2$, $CO_2$) conditions. The mechanisms of mass transport in a lime matrix were represented by the evaporation and condensation (${\gamma}=1.7$) at $1000^{\circ}C$ and the volume diffusion (${\gamma}=2.7$) at $800^{\circ}C$, which was obtained by the specific surface area of calcined lime with sintering conditions. Also, the effect of physical property on the reactivity of sulfation reaction was determined by the changes of pore size with $lime-SO_2$ reaction in this work. The initial sulfation rate of calcined lime increased with increasing temperature, whereas the capture capacity of $SO_2$ exhibited a maximum value at $900^{\circ}C$. The pore volume of sulfated lime was decreased with increasing sulfation time, but the major pores shifted to the distribution of larger size at a temperature of $850{\;}~{\;}1000^{\circ}C$. The mean pore size of sulfated lime based on pore volume decreased gradually at $1000^{\circ}C$; however, it increased with sulfation time up to 40 min and rapidly decreased thereafter.

  • PDF

염화아연 약품활성화를 이용한 음식물쓰레기로부터 활성탄 제조 (Preparation of Activated Carbon from Wasted Food by Chemical Activation with Zinc Chloride)

  • 강화영;이영동;김세훈;박성봉;정재성;박상숙
    • 대한환경공학회지
    • /
    • 제30권9호
    • /
    • pp.900-906
    • /
    • 2008
  • 활성탄을 제조하기 위하여 원료물질로서 음식물쓰레기를 이용하였다. 음식물쓰레기를 염화아연으로 약품활성화 하였다. 실험은 서로 다른 약품첨가비율(활성화제/음식물쓰레기), 활성화 온도, 그리고 활성화시간을 변수로 하여 수행하였다. 활성화물의 특성을 나타내기 위하여 요오드가와 메틸렌블루 가, BET 표면적, 세공 용적, 미세공 비율, 세공 직경, 수율 그리고 주사전자현미경 관찰을 수행하였다. 로터리 킬른 반응로를 이용하여 염화아연 함침비 1.0배인 시료를 500$^{\circ}C$에서 60분 동안 활성화하여 제조한 활성화물의 요오드가는 480 mg/g, 메틸렌블루 가는 95 mL/g, BET 표면적은 410 m$^2$/g, 세공 용적은 0.248 cm$^3$/g, 그리고 평균세공직경은 2.43 nm로 나타났다. 제조한 활성탄의 총 표면적중 미세공 면적 비율은 70.7%, 총 세공 용적 중 미세공 용적 비율은 53.2%를 나타냈다.

분무열분해 공정에 의한 규산수용액으로부터 다양한 미세기공을 갖는 실리카 나노다공체 제조 (Preparation of Nanoporous Silica Particles containing Various Pore Sizes from Silicic Acid by Spray Pyrolysis)

  • 김선경;이총민;장한권;장희동
    • 한국입자에어로졸학회지
    • /
    • 제12권3호
    • /
    • pp.65-72
    • /
    • 2016
  • Nanoporous $SiO_2$ particles containing different pore volume and size were prepared from silicic acid by a spray pyrolysis. The pore size, pore volume and particle size could be controlled with varying the precursor concentration, reaction temperature, and amount of organic templates such as Urea and poly ethylene glycol (PEG). The pore size distribution, pore volume and specific surface area of as-prepared particles were analyzed by BET and BJH methods, and the average particle sizes were measured by a laser diffraction method. The nanoporous $SiO_2$ particles ranged $0.6-0.9{\mu}m$ in diameter were successfully synthesized and the average particle size increased as the silicic acid concentration increased. The morphology of nanoporous $SiO_2$ particles was spherical and pores ranged 1 - 40 nm in diameter were measured in the particles. In case of Urea added into silicic acid, it showed no much difference in the morphology, pore size and pore volume at different Urea concentration. On the other hand, when PEG was added, it was clearly observed that pore diameter and pore volume of the particles surface increased with respect to PEG concentration.

숙성조건 의한 메조포러스 SBA-15 실리카의 기공구조와 특성 (Characterization and Pore Structure of Ordered Mesoporous SBA-15 Silica by Aging Condition)

  • 김한호;박현;김경남
    • 한국재료학회지
    • /
    • 제20권5호
    • /
    • pp.252-256
    • /
    • 2010
  • The study was done to change the morphology and pore size of SBA-15 silica, and the characteristics of SBA-15 silica were investigated with TG-DSC, XRD, SEM, TEM and N2 adsorption-desorption under changing aging conditions. SBA-15 silica having a 2D-hexagonal structure was synthesized and confirmed by SEM and TEM. The structure of mesoporus silica SBA-15 showed a pore having regularly formed hexagonal structure and a passage having a cylindrical shape. This result is in good agreement with the pore forming in XRD and cylindrical shape of the structure in $N_2$ adsorption-desorption isotherm. SBA-15 silica showed a large BET surface area of $603-698\;m^2/g$, a pore volume of $0.673-0.926\;cm^3/g$, a large pore diameter of 5.62-7.42 nm, and a thick pore wall of 3.31-4.37 nm. This result shows that as the aging temperature increases, the BET surface area, pore volume, and pore diameter increase but the pore wall thickness decreases. The BET surface areas in SM-2 and SM-3 are as large as $698\;m^2/g$. However, SM-2 has a large surface area and forms a thick pore wall, when the aging temperature is $100^{\circ}C$ and is synthesized into stable mesoporous SBA-15 silica.

마이크로파를 이용한 탈착시스템에서 개질화 된 활성탄의 흡.탈착 특성 (Adsorption and Desorption Characteristics of Toluene in Modified Activated Carbon Using Microwave Irradiation)

  • 김범준;최성우
    • 한국환경과학회지
    • /
    • 제17권5호
    • /
    • pp.493-500
    • /
    • 2008
  • This paper describes the adsorption/desorpton efficiency of a modified activated carbon by irradiated microwave to treat toluene. By employing microwave energy, the regeneration time was considerably shortened compared with conventional thermal heating regeneration. New adsorbent called ACB (Activated Carbon-Bentonite) was prepared from powder activated carbon with mixing bentonite as a binder. Specific surface area, average pore size and total pore volume of ACB were calculated from the nitrogen adsorption/desorption isotherm. The surface of ACB was characterized with scanning electron microscope(SEM). The results showed that the specific surface area, total pore volume, average pore size of ABC was not influenced by regenerating cycle with microwave irradiation. Toluene was adsorbed onto ACB which desorbed by MW irradiation. Absorption capacity of ACB was 0.117 $g_{toluene}/g_{ACB}$. Desorption efficiency of toluene increased as higher microwave output was applied.

Surface and Adsorption Properties of Activated Carbon Fabric Prepared from Cellulosic Polymer: Mixed Activation Method

  • Bhati, Surendra;Mahur, J.S.;Dixit, Savita;Choubey, O.N.
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.569-573
    • /
    • 2013
  • In this study, activated carbon fabric was prepared from a cellulose-based polymer (viscose rayon) via a combination of physical and chemical activation (mixed activation) processes by means of $CO_2$ as a gasifying agent and surface and adsorption properties were evaluated. Experiments were performed to investigate the consequence of activation temperature (750, 800, 850 and $925^{\circ}C$), activation time (15, 30, 45 and 60 minutes) and $CO_2$ flow rate (100, 200, 300 and 400 mL/min) on the surface and adsorption properties of ACF. The nitrogen adsorption isotherm at 77 K was measured and used for the determination of surface area, total pore volume, micropore volume, mesopore volume and pore size distribution using BET, t-plot, DR, BJH and DFT methods, respectively. It was observed that BET surface area and TPV increase with rising activation temperature and time due to the formation of new pores and the alteration of micropores into mesopores. It was also found that activation temperature dominantly affects the surface properties of ACF. The adsorption of iodine and $CCl_4$ onto ACF was investigated and both were found to correlate with surface area.

담배용 흡착제들의 동공 특성에 관한 연구 (Studies on Pore Characteristics of Several Adsorbents)

  • 임광수;정용순;이영택
    • 한국연초학회지
    • /
    • 제16권2호
    • /
    • pp.181-190
    • /
    • 1994
  • Various active carbons were made from plant sources of coconut shell, pine tree, oak tree and lignite coal. Pore characteristics of these adsorbents were investigated. 1, With increasing activation time, specific surface area and pore volume increased, but the development of micropores was limited at a certain level. The average pore diameter, by BET, of coconut active carbon was 15.5-21.8$\AA$ and that of lignite carbon was 15.6-31.3$\AA$. The pore diameters of silica-gel, sepiolite and zeolite was 30.9$\AA$, 58.6$\AA$ and 55.7$\AA$, respectively. 2. The Horvath - Kawazoe micropore diameter of coconut shell active carbon was under 10.5$\AA$ and that of the other active carbon was under 20.9$\AA$ but silica-gel 33$\AA$, sepiolite 103 $\AA$ and zeolite was unexpectedly large to be 175$\AA$. From the difference between BET micropore diameter and Howath - Kawazoe diameter, it could be said that silica - gel has comparatively uniform pore diameter but sepiolite and zeolite have very uneven diameter. 3. Total pore volume of coconut shell active carbon was 0.27-1.04 cm3/g but that of the other active carbon, 0.23-0.62 cm3/g, was much lower than that of coconut shell active carbon. Hydrophilic adsorbent silica - gel and sepiolite showed big difference in specific surface area, but pore volumes of these were 0.47 and 0.56 cm3/g showing similar value and micropore volumes of these were, respectively, 0.06 cm3/g and 0.04 cm3/g. Total pore volume of zeolite was 0.1 cm3/g and that of micropore was only 0.02 cm3/g.

  • PDF

제산제 알루미나수화물의 콜로이드성과 제산능 (Collodial Properties and Acid Consuming Capacity of Hydrous Aluminum Oxide Suspension)

  • 이계주;이기명
    • 약학회지
    • /
    • 제35권4호
    • /
    • pp.277-282
    • /
    • 1991
  • Rheological, colloidal and micromeritical properties were followed to investigate aging mechanisms of hydrous aluminum oxide suspension using Zeta-meter systems, BET adsorption apparatus, Master sizer and electronmicroscope. The results indicate that hydrous aluminum oxide suspension revealed plastic flow with thixotropy. The viscosity, thixotropy and yield value were increased with increasing concentration. During aging process, the viscosity and thixotropic index were increased by an addition of glycerin, however, sorbitol stabilized aging process of the suspension being accompanied with growth of particle size and reduction in specific surface area, pore area and pore volume, and consistency. Diminution of adsorptive power of the particles was also protected by addition of sorbitol to hydrous aluminum oxide suspension. From these results, one of aging mechanism of hydrous aluminum oxide suspension assumed growth and/or crystallization of colloidal particles in aqueous suspension.

  • PDF

Improved Mesoporous Structure of High Surface Area Carbon Nanofiber for Electrical Double-Layer Capacitors

  • Lee, Young-Geun.;An, Geon-Hyoung;Ahn, Hyo-Jin
    • 한국재료학회지
    • /
    • 제27권4호
    • /
    • pp.192-198
    • /
    • 2017
  • Carbon nanofiber (CNF) is used as an electrode material for electrical double layer capacitors (EDLCs), and is being consistently researched to improve its electrochemical performance. However, CNF still faces important challenges due to the low mesopore volume, leading to a poor high-rate performance. In the present study, we prepared the unique architecture of the activated mesoporous CNF with a high specific surface area and high mesopore volume, which were successfully synthesized using PMMA as a pore-forming agent and the KOH activation. The activated mesoporous CNF was found to exhibit the high specific surface area of $703m^2g^{-1}$, total pore volume of $0.51cm^3g^{-1}$, average pore diameter of 2.9 nm, and high mesopore volume of 35.2 %. The activated mesoporous CNF also indicated the high specific capacitance of $143F\;g^{-1}$, high-rate performance, high energy density of $17.9-13.0W\;h\;kg^{-1}$, and excellent cycling stability. Therefore, this unique architecture with a high specific surface area and high mesopore volume provides profitable synergistic effects in terms of the increased electrical double-layer area and favorable ion diffusion at a high current density. Consequently, the activated mesoporous CNF is a promising candidate as an electrode material for high-performance EDLCs.