• Title/Summary/Keyword: pore analysis

Search Result 1,250, Processing Time 0.03 seconds

Fouling behaviours of two stages microalgae/membrane filtration system applied to palm oil mill effluent treatment

  • Teow, Yeit Haan;Wong, Zhong Huo;Takriff, Mohd Sobri;Mohammad, Abdul Wahab
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.373-383
    • /
    • 2018
  • Fouling by solids and microorganisms is the major obstacle limiting the efficient use of membrane wastewater treatment. In our previous study, two stages microalgae/membrane filtration system was proposed to treat anaerobic digested palm oil mill effluent (AnPOME). This two stages microalgae/membrane filtration system had showed great potential for the treatment of AnPOME with high removal of COD, $NH_3-N$, $PO_4{^{3-}}$, TSS, turbidity, and colour. However, fouling behavior of the membrane in this two stages microalgae/membrane filtration system was still unknown. In this study, empirical models that describe permeate flux decline for dead-end filtration (pore blocking - complete, intermediate, and standard; and cake layer formation) presented by Hermia were used to fit the experimental results in identifying the fouling mechanism under different experimental conditions. Both centrifuged and non-centrifuged samples were taken from the medium with 3 days RT intervals, from day 0 to day 12 to study their influence on fouling mechanisms described by Hermia for ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO) filtration mode. Besides, a more detailed study on the use of resistance-in-series model for deadend filtration was done to investigate the fouling mechanisms involved in membrane filtration of AnPOME collected after microalgae treatment. The results showed that fouling of UF and NF membrane was mainly caused by cake layer formation and it was also supported by the analysis for resistance-in-series model. Whereas, fouling of RO membrane was dominated by concentration polarization.

Effect of Molecular Sieve of Carbon Granules by Controlling Micropores (미세공 조절에 의한 탄소제립물의 분자체 효과)

  • Kim, Tae-Hwan;Lee, Jae Hoon;Kim, Kweon-Ill;Kim, Jong Huy;Sung, Jae Suk
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.798-802
    • /
    • 1998
  • Carbon granules were prepared by granulating a mixture of coconut shell powder and coal tar solution, and then by carbonizing at different temperatures. To control micropores of the carbonized granules, the deposition time of benzene vapor under nitrogen atmosphere was varied. For each prepared sample, SEM morphology and true density were investigated. The adsorption rates on the granules were measured with respect to oxygen and nitrogen by means of the Cahn D-200 system. Diffusivity, selectivity and amount of equilibrium adsorption for the gases were obtained from the measurement of adsorption rate. Based on the analysis of the adsorption characteristics, the optimum temperature and the deposition time for preparation of the molecular sieve carbon granules were found to be $800^{\circ}C$ and 10 minutes, respectively. At these optimal conditions, the selectivity coefficient, 26.4, 0f oxygen and nitrogen was obtained.

  • PDF

Sol-Gel Template Synthesis and Characterization of PT, PZ and PZT Nanotubes (PT, PZ와 PZT나노튜브의 졸-겔 형판합성과 특성)

  • Jang, Gi Seok;Bernadette A. Hernandez;Ellen R. Fisher;Peter K. Dorhout
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.3
    • /
    • pp.242-251
    • /
    • 2002
  • We report the synthesis and characterization of the perovskite nanotubes made by sol-gel template syn-thesis.Both lead titanate (PbTiO3 : PT), lead zirconate (PbZrO3 : PZ) and lead zirconium titanate (PbZrO3 -PbTiO3 : PZT) solid solution nanotubes were prepared with a chelate sol-gel of titanium isopropoxide (Ti(OPri)4 ), zirconium tet-rabutoxide (Zr(OBu)4 ) and the respective lead acetate (Pb(OAc)2 -3H2O). WhatmanRanodisc membranes, with a 200nm pore size, served as the template. After the removal of the template in the 6M-NaOH, scanning electron microscopy shows that the shapes formed are 200 nm outer diameter tubes with 50mm lengths. Transmission electron microscopy and electron diffraction reveal that the tubes are polycrystalline. The PT nanotubes so far have shown an anomalous transition temperature, 234.4$^{\circ}C$ as measured by DSC with a small particle size, 15.4 nm determined by X-ray analysis with the aid of Scherrer's equation.

Irregular Distribution of Lead in Groundwater in Door County, Wisconsin (위스컨신주 도어지역의 지하수내 납성분의 불규칙한 분포에 관한 연구)

  • 우남칠
    • The Journal of Engineering Geology
    • /
    • v.3 no.3
    • /
    • pp.241-252
    • /
    • 1993
  • Lead bas been found in the groundwater in Door County, Wiscorsin, with temporally and spatially irregular distribution in concentration. Correlation coeffidents were calculated among lead indicators in groundwater(frequency of lead detections, mean and maximum concentration of lead detections) and seven independent variables(stucture and geographic factors of wells, hydrogeological factors at lead-arsenate mixing sites and the level of soil contamination) which are possibly related to the lead level in groundwater. The significance of relationships was determined statistically by a t-test at the 90% confidence level, and indicated that the spatially located lead-arsenate mixing sites provided the lead in groundwater in the study area. A total of 112 groundwater samples were collected from 5 house wells with previous lead detects. Lead was detected in partides on ifiter papers with $0.45{\;}\mu\textrm{m}$ pore size, but not in filtrates. The result of chemical analysis for lead indicates that lead is associated with partides in groundwater in Door County. Subsequently, the irregular distribution of lead in the county results from the transport of particulate lead along the advective groundwater movement through the preferential pathways sucn as vertical and bedding-plane joints.

  • PDF

Effect of Zirconia Addition on Mechanical Properties of Spinel/Zirconia-glass Dental Crown Composites Prepared by Melt-infiltration (용융침투법으로 제조한 인공치관용 스피넬/지르코니아-유리 복합체의 기계적 특성에 미치는 지르코니아 첨가효과)

  • Lee, Deuk-Yong;Kim, Byung-Soo;Jang, Joo-Wung;Lee, Myung-Hyun;Park, Il-Seok;Kim, Dae-Joon
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1028-1034
    • /
    • 2002
  • Spinel/zirconia-glass composites prepared by melt-infiltration were fabricated to investigate the effect of zirconia addition on mechanical and optical properties of the composites. The infiltration distance was parabolic with respect to time as described by the Washburn equation and the penetration rate constant, K, decreased due to the reduction in pore size as the amount of zirconia rose. Although the optimum strength(308 MPa) of the Spinel/zirconia-glass composites was observed when the zirconia was added up to 20 wt%, K and transmittance decreased as the zirconia content rose. In conclusion, it suggested that the positive effect of strength as a result of the addition of zirconia was not effective.

One-step microwave synthesis of magnetic biochars with sorption properties

  • Zubrik, Anton;Matik, Marek;Lovas, Michal;Stefusova, Katarina;Dankova, Zuzana;Hredzak, Slavomir;Vaclavikova, Miroslava;Bendek, Frantisek;Briancin, Jaroslav;Machala, Libor;Pechousek, Jiri
    • Carbon letters
    • /
    • v.26
    • /
    • pp.31-42
    • /
    • 2018
  • Adsorption is one of the best methods for wastewater purification. The fact that water quality is continuously decreasing requires the development of novel, effective and cost available adsorbents. Herein, a simple procedure for the preparation of a magnetic adsorbent from agricultural waste biomass and ferrofluid has been introduced. Specifically, ferrofluid mixed with wheat straw was directly pyrolyzed either by microwave irradiation (900 W, 30 min) or by conventional heating ($550^{\circ}C$, 90 min). Magnetic biochars were characterized by X-ray powder diffraction, $M{\ddot{o}}ssbauer$ spectroscopy, textural analysis and tested as adsorbents of As(V) oxyanion and cationic methylene blue, respectively. Results showed that microwave pyrolysis produced char with high adsorption capacity of As(V) ($Q_m=25.6mg\;g^{-1}$ at pH 4), whereas conventional pyrolysis was not so effective. In comparison to conventional pyrolysis, one-step microwave pyrolysis produced a material with expressive microporosity, having a nine times higher value of specific surface area as well as total pore volume. We assumed that sorption properties are also caused by several iron-bearing composites identified by $M{\ddot{o}}ssbauer$ spectroscopy ([super] paramagnetic $Fe_2O_3$, ${\alpha}-Fe$, non-stoichiometric $Fe_3C$, ${\gamma}-Fe_2O_3$, ${\gamma}-Fe$) transformed from nano-maghemite presented in the ferrofluid. Methylene blue was also more easily removed by magnetic biochar prepared by microwaves ($Q_m=144.9mg\;g^{-1}$ at pH 10.9) compared to using conventional techniques.

Influence of the Duty Cycle on the Characteristics of Al2O3 Coatings Formed on the Al-1050 by Plasma Electrolytic Oxidation (Al-1050 위에 플라즈마 전해 산화법으로 형성된 Al2O3 피막 특성에 미치는 듀티사이클의 영향)

  • Nam, Kyung-Su;Moon, Jung-In;Kongsy, Phimmavong;Song, Jeong-Hwan;Lim, Dae-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.2
    • /
    • pp.108-115
    • /
    • 2013
  • Oxide coatings were prepared on Al-1050 substrates by an environment-friendly plasma electrolytic oxidation (PEO) process using an electrolytic solution of $Na_2SiO_3$ (8 g/L) and NaOH (3 g/L). The effects of three different duty cycles (20%, 40%, and 60%) and frequencies (50 Hz, 200 Hz, and 800 Hz) on the structure and micro-hardness of the oxide coatings were investigated. XRD analysis revealed that the oxides were mainly composed of ${\alpha}-Al_2O_3$, ${\gamma}-Al_2O_3$, and mullite. The proportion of each crystalline phase depended on various electrical parameters, such as duty cycle and frequency. SEM images indicated that the oxide coatings formed at a 60% duty cycle exhibited relatively coarser surfaces with larger pore sizes and sintering particles. However, the oxides prepared at a 20% duty cycle showed relatively smooth surfaces. The PEO treatment also resulted in a strong adhesion between the oxide coating and the substrate. The oxide coatings were found to improve the micro-hardness with the increase of duty cycle. The structural and physical properties of the oxide coatings were affected by the duty cycles.

A Consideration on Deformation Characteristics of Normally-Consolidated Clays by Various Stress Paths (다양한 응력경로에 따른 정규압밀 점성토의 변형특성 고찰)

  • 김창엽;정충기
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.161-173
    • /
    • 1999
  • Settlement analysis based on oedometer test results with or without Skempton-Bjerrum's modification method ( widely used for practical purposes when estimating consolidation settlements of soft clay deposits) has shortcomings that it cannot simulate real stress states and deformation behaviors of soils in case that in-situ loading and deformation conditions are not 1-dimensional. In this study, the stress path method, reflecting various probable stress paths, was employed to normally - consolidated kaolinite samples by using automated triaxial testing device which can control stress paths automatically. From this experimental study, elastic, consolidation, secondary compression and pore pressure development - dissipation behaviors under various stress paths were analyzed and deformation characteristics of soft clays, which can be the basis of rational estimation of settlements, were studied. Also by comparing results of stress path tests with those of 1-dimensional consolidation tests, limitations and problems of conventional methods were clarified.

  • PDF

Analysis of Internal Structure in Alkali-Activated Fire Protection Materials Using Fly ash (플라이애시를 활용한 알칼리 활성화 내화성 마감재의 내부구조 분석)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.104-112
    • /
    • 2012
  • This study involves investigating the correlation between variation of internal structure and heating temperature of alkali-activated fire protection materials using fly ash. Dehydration and micro crack thermal expansion occur in cement hydrates of cementitious materials heated by fire. Internal structure difference due to both the dehydration of cement hydrates and pore solution causes and influences changes in the properties of materials. Also, this study is concerned with change in microstructure and dehydration of the alkali-activated fire protection materials at high temperatures. The testing methods of alkali-activated fire protection materials in high temperature properties are make use of TG-DSC and mercury intrusion porosimetry measurements. The study results show that the alkali-activated fire resistant finishing material composed of potassium hydroxide, sodium silicate and fly ash has the high temperature thermal stability. These thermal stability is caused by the ceramic binding capacity induced by alkali activation reaction.

  • PDF

Evaluation of Cyst Loss in Standard Procedural Steps for Detecting of Giardia lamblia and Cryptosporidium parvum in Water

  • Kim, Kyung-Ju;Jung, Hyang-Hee;Lee, Ki-Say
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.4
    • /
    • pp.368-371
    • /
    • 2006
  • The standard procedure outlined by the United States Environmental Protection Agency (US EPA) in Method 1623 for analyzing Giardia lamblia cysts and Cryptosporidium parvum oocysts in water samples consists of filtration, elution, centrifugal concentration, immunomagnetic separation (IMS), and immunofluorescence assay (IFA) followed by microscopic examination. In this study, the extent of (oo)cyst loss in each step of this procedure was evaluated by comparing recovery yields in segmented analyses: (i) IMS + IFA, (ii) concentration + IMS + IFA, and (iii) filtration/elution + concentration + IMS + IFA. The complete (oo)cyst recovery by the full procedure was $52{\sim}57%$. The (oo) cyst loss in the IMS step was only $0{\sim}6%$, implying that IMS is a fairly reliable method for (oo)cyst purification. Centrifugal concentration of the eluted sample and pellet collection before IMS resulted in a loss of $8{\sim}14%$ of the (oo)cysts. The largest (oo)cyst loss occurred in the elution step, with $68{\sim}71%$ of the total loss. The permeated loss of (oo)cysts was negligible during filtration of the water sample with a $1.0-{\mu}m$ pore polyethersulfone (PES) capsule. These results demonstrated that the largest fraction of (oo)cyst loss in this procedure occurred due to poor elution from the filter matrix. Improvements in the elution methodology are therefore required to enhance the overall recovery yield and the reliability of the detection of these parasitic protozoa.