• Title/Summary/Keyword: pore analysis

Search Result 1,250, Processing Time 0.033 seconds

An Analysis of Pore Network of Drilling Core from Pohang Basin for Geological Storage of CO2 (이산화탄소 지중저장을 위한 포항분지 시추코어의 공극구조 분석)

  • Park, Jihwan;Park, Hyeong-Dong
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.181-191
    • /
    • 2016
  • In geological storage of $CO_2$, the behavior of $CO_2$ is influenced by pore network of rock. In this study, the drilling cores from Pohang Basin were analyzed quantitatively using three-dimensional images acquired by X-ray micro computed tomography. The porosities of sandstone specimens around 740 m-depth (T1), 780 m-depth (T2) and 810 m-depth (T3) which were target strata were 25.22%, 23.97%, 6.28%, respectively. Equivalent diameter, volume, area, local thickness of pores inside the sandstone specimens were analyzed. As a result, the microstructural properties of T1 and T2 specimens were more suitable for geological storage of $CO_2$ than those of T3 specimens. The result of the study can be used as input data of the site for decision of injection condition, flow simulation and so on.

Physical Properties of Polymer Concrete Composite Using Rapid-Cooled Steel Slag (I) (Use of Rapid-Cooled Steel Slag in Replacement of Fine Aggregate) (급냉 제강슬래그를 사용한 폴리머 콘크리트 복합재료의 물성(I) (잔골재를 급냉 제강슬래그로 대체 사용))

  • Hwang, Eui-Hwan;Lee, Choul-Ho;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.210-216
    • /
    • 2012
  • For the recycling of rapid-cooled steel slag, various specimens were prepared with the various replacement ratios of the rapid-cooled steel slag and the addition ratios of polymer binders. The physical properties of these specimens were then investigated by absorption test, compressive strength test, flexural strength test and hot water resistance test, and the pore and the micro-structure analysis was performed using scanning electron microscope. Results showed that the flexural strength increased with the increase of rapid-cooled steel slag and polymer binder, but the compressive strength showed a maximum strength at a certain proportion. By the hot water resistance test, compressive strength and flexural strength decreased remarkably and the total pore volume increased but the pore diameter decreased. SEM observation of the structure before the hot water resistance test revealed a very compact infusion of structure but the decomposition or thermal degradation appeared in polymer binders when observed after the hot water resistance test.

Fabrication of Porous Mo-Cu by Freeze Drying and Hydrogen Reduction of Metal Oxide Powders (금속산화물 분말의 동결건조 및 수소환원에 의한 Mo-Cu 다공체 제조)

  • Kang, Hyunji;Han, Ju-Yeon;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • In this study, porous Mo-5 wt% Cu with unidirectionally aligned pores is prepared by freeze drying of camphene slurry with $MoO_3-CuO$ powders. Unidirectional freezing of camphene slurry with dispersion stability is conducted at $-25^{\circ}C$, and pores in the frozen specimens are generated by sublimation of the camphene crystals. The green bodies are hydrogen-reduced at $750^{\circ}C$ and sintered at $1000^{\circ}C$ for 1 h. X-ray diffraction analysis reveals that $MoO_3-CuO$ composite powders are completely converted to a Mo-and-Cu phase without any reaction phases by hydrogen reduction. The sintered bodies with the Mo-Cu phase show large and aligned parallel pores to the camphene growth direction as well as small pores in the internal walls of large pores. The pore size and porosity decrease with increasing composite powder content from 5 to 10 vol%. The change of pore characteristics is explained by the degree of powder rearrangement in slurry and the accumulation behavior of powders in the interdendritic spaces of solidified camphene.

Fabrication of Porous Ni by Freeze Drying and Hydrogen Reduction of NiO/Camphene Slurry (NiO/camphene 슬러리의 동결건조 및 수소환원 공정에 의한 Ni 다공체 제조)

  • Jeong, Jae-Hun;Oh, Sung-Tag;Hyun, Chang-Yong
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.6-10
    • /
    • 2019
  • In this study, freeze drying of a porous Ni with unidirectionally aligned pore channels is accomplished by using a NiO powder and camphene. Camphene slurries with NiO content of 5 and 10 vol% are prepared by mixing them with a small amount of dispersant at $50^{\circ}C$. Freezing of a slurry is performed at $-25^{\circ}C$ while the growth direction of the camphene is unidirectionally controlled. Pores are generated subsequently by sublimation of the camphene during drying in air for 48 h. The green bodies are hydrogen-reduced at $400^{\circ}C$ and then sintered at $800^{\circ}C$ and $900^{\circ}C$ for 1 h. X-ray diffraction analysis reveals that the NiO powder is completely converted to the Ni phase without any reaction phases. The sintered samples show large pores that align parallel pores in the camphene growth direction as well as small pores in the internal walls of large pores. The size of large and small pores decreases with increasing powder content from 5 to 10 vol%. The influence of powder content on the pore structure is explained by the degree of powder rearrangement in slurry and the accumulation behavior of powders in the interdendritic spaces of solidified camphene.

Effect of Freeze Drying Condition of WO3/Tert-Butyl Alcohol Slurry on the Microstructural Characteristics of Porous Body (WO3/tert-butyl alcohol 슬러리의 동결건조 조건이 다공체의 미세구조 특성에 미치는 영향)

  • Lee, Eui Seon;Heo, Youn Ji;Suk, Myung-Jin;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.28 no.4
    • /
    • pp.331-335
    • /
    • 2021
  • The effects of drying temperature on the microstructure of porous W fabricated by the freeze-casting process of tert-butyl alcohol slurry with WO3 powder was investigated. Green bodies were hydrogen-reduced at 800℃ for 1 h and sintered at 1000℃ for 6 h. X-ray diffraction analysis revealed that WO3 powders were completely converted to W without any reaction phases by hydrogen reduction. The sintered body showed pores aligned in the direction of tert-butyl alcohol growth, and the porosity and pore size decreased as the amount of WO3 increased from 5 to 10vol%. As the drying temperature of the frozen body increased from -25℃ to -10℃, the pore size and thickness of the struts increased. The change in microstructural characteristics based on the amount of powder added and the drying temperature was explained by the growth behavior of the freezing agent and the degree of rearrangement of the solid powder during the solidification of the slurry.

Fabrication of Porous Tungsten by Freeze Casting and Vacuum Drying of WO3/Tert-butyl Alcohol Slurry (WO3/Tert-butyl alcohol 슬러리의 동결주조와 진공분위기 건조를 이용한 텅스텐 다공체 제조)

  • Heo, Youn Ji;Lee, Eui Seon;Oh, Sung-Tag;Jeong, Young-Keun
    • Journal of Powder Materials
    • /
    • v.29 no.2
    • /
    • pp.118-122
    • /
    • 2022
  • The synthesis of porous W by freeze-casting and vacuum drying is investigated. Ball-milled WO3 powders and tert-butyl alcohol were used as the starting materials. The tert-butyl alcohol slurry is frozen at -25℃ and dried under vacuum at -25 and -10℃. The dried bodies are hydrogen-reduced at 800℃ and sintered at 1000℃. The XRD analysis shows that WO3 is completely reduced to W without any reaction phases. SEM observations reveal that the struts and pores aligned in the tert-butyl alcohol growth direction, and the change in the powder content and drying temperature affects the pore structure. Furthermore, the struts of the porous body fabricated under vacuum are thinner than those fabricated under atmospheric pressure. This behavior is explained by the growth mechanism of tert-butyl alcohol and rearrangement of the powders during solidification. These results suggest that the pore structure of a porous body can be controlled by the powder content, drying temperature, and pressure.

Characteristics of Undrained Cyclic Shear Behavior of Nak-Dong River Sand by Silt Contents (실트질 함유량에 따른 낙동강 모래의 비배수 반복전단거동 특성)

  • Kim, Young-Su;Kim, Dae-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.79-89
    • /
    • 2008
  • In this study, a series of undrained cyclic triaxial tests were performed with three different consolidation stress ratios ($K_c$=1.0, 1.5, 2.0) to investigate the undrained shear strength characteristics of sands with respect to the amount of contained silt located around the basin of Nak-dong River. The test results show that the more the sand has silt, the lower is cyclic shear stress ratio (CSR) in all $K_c$ and that the higher $K_c$ goes, the larger CSR decreases due to the increase of contained silt. The excessive pore pressure caused during shearing has an influence on the decrease of CSR by the high initial pore pressure in proportion to the amount of contained silt regardless of the $K_c$ value. After consolidation, the analysis of the skeleton void ratio of the sample reveals that the main cause of the decrease of CSR as well as the increase of the initial excessive pore pressure is the increase of the skeleton void ratio in proportion to the amount of contained silt.

Investigation on Support Mechanism of Geogrid-Encased Stone Columns in Soft Ground (연약지반에 시공되는 지오그리드 감쌈 스톤컬럼의 하중 지지 메카니즘에 관한 연구)

  • Yoo, Chung-Sik;Kim, Sun-Bin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.93-101
    • /
    • 2008
  • This paper presents the results of numerical investigation on support mechanism of geogrid-encased stone columns for use in soft ground improvement. A number of cases were analyzed using a 3D stress-pore pressure coupled model that can effectively model construction sequence and drainage as well as reinforcing effects of geogrid-encased stone columns. The results indicated that the geogrid encasement provides additional confinement effect that reduces vertical stress in the soft ground, thus resulting in less excess pore water pressures and associated settlement. Also revealed was that such a confinement effect depends on encasement length and stiffness of geogrid. It is also shown that there exist critical encasement length and stiffness of geogrid for a given condition.

Reinforced Ion-exchange Membranes for Enhancing Membrane Capacitive Deionization (막 축전식 탈염 공정의 성능 향상을 위한 강화 이온교환막)

  • Min-Kyu Shin;Hyeon-Bee Song;Moon-Sung Kang
    • Membrane Journal
    • /
    • v.33 no.5
    • /
    • pp.257-268
    • /
    • 2023
  • Membrane capacitive deionization (MCDI) is a variation of the conventional CDI process that can improve desalination efficiency by employing an ion-exchange membrane (IEM) together with a porous carbon electrode. The IEM is a key component that greatly affects the performance of MCDI. In this study, we attempted to derive the optimal fabricating factors for IEMs that can significantly improve the desalination efficiency of MCDI. For this purpose, pore-filled IEMs (PFIEMs) were then fabricated by filling the pores of the PE porous support film with monomers and carrying out in-situ photopolymerization. As a result of the experiment, the prepared PFIEMs showed excellent electrochemical properties that can be applied to various desalination and energy conversion processes. In addition, through the correlation analysis between MCDI performance and membrane characteristic parameters, it was found that controlling the degree of crosslinking of the membranes and maximizing permselectivity within a sufficiently low level of membrane electrical resistance are the most desirable membrane fabricating condition for improving MCDI performance.

Effects of chloride ion transport characteristics and water pressure on mechanical properties of cemented coal gangue-fly ash backfill

  • Dawei Yin;Zhibin Lu;Zongxu Li;Chun Wang;Xuelong Li;Hao Hu
    • Geomechanics and Engineering
    • /
    • v.38 no.2
    • /
    • pp.125-137
    • /
    • 2024
  • In paste backfill mining, cemented coal gangue-fly ash backfill (CGFB) can effectively utilize coal-based solid waste, such as gangue, to control surface subsidence. However, given the pressurized water accumulation environment in goafs, CGFB is subject to coupling effects from water pressure and chloride ions. Therefore, studying the influence of pressurized water on the chlorine salt erosion of CGFB to ensure green mining safety is important. In this study, CGFB samples were soaked in a chloride salt solution at different pressures (0, 0.5, 1.5, and 3.0 MPa) to investigate the chloride ion transport characteristics, hydration products, micromorphology, pore characteristics, and mechanical properties of CGFB. Water pressure was found to promote chloride ion transfer to the CGFB interior and the material hydration reaction; enhance the internal CGFB pore structure, penetration depth, and chloride ion content; and fill the pores between the material to reduce its porosity. Furthermore, the CGFB peak uniaxial compression strain gradually decreased with increasing soaking pressure, whereas the uniaxial compressive strength first increased and then decreased. The resulting effects on the stability of the CGFB solid-phase hydration products can change the overall CGFB mechanical properties. These findings are significant for further improving the adaptability of CGFB for coal mine engineering.