• Title/Summary/Keyword: pore analysis

Search Result 1,250, Processing Time 0.026 seconds

Fabrication and Filtering Test of Nanoparticle-Stabilized Emulsion to be Suitable for Enhanced Oil Recovery (석유증진회수에 적합한 나노 에멀젼의 제조 및 필터링 시험 분석)

  • Son, Han Am;Lee, Keun Ju;Cho, Jang Woo;Im, Kyung Chul;Kim, Jin Woong;Kim, Hyun Tae
    • Economic and Environmental Geology
    • /
    • v.46 no.1
    • /
    • pp.51-61
    • /
    • 2013
  • Researches on the oil recovery enhancement using the nanotechnology has recently been studied in the United States. The previous researches has focused mainly on the flow characteristics of nanoparticles in porous media, and the stability of the nano-emulsion itself. However, the analysis did not deal with the size effects between a nano-emulsion and the pore size which has an important role when nano-emulsion flows in the porous media. In this research, nano-based emulsion was fabricated which is able to be applied for the enhanced oil recovery techniques and its characteristics was analyzed. In addition, in order to identify the characteristics of nano-emulsions flowing through the porous media, the size effect was analysed by filtering test. According to the results, when the emulsion was fabricated, SCA(Silane Coupling Agent) or PVA(Poly Vinyl Alcohol) are added to improve the stability of emulsion. As the ratio of the decane to water increased, the viscosity of emulsion and the droplet size also increased. For the filtering test at the atmospheric conditions, the droplet did not go through the filter; only the separated water from the emulsion was able to be filtered. This phenomenon occurred because the droplet was not able to overcome the capillary pressure. At the filtering test by suction pressure, most of the emulsion was filtered over the filter size of $60{\mu}m$. However, the ratio of filtration was rapidly degraded at less than $45{\mu}m$ filters. This is caused due to deformation and destruction of the droplet by strong shear stress when passing through the pore. The results from the study on the basic characteristic of nano-emulsion and filtering test will be expected to play as the important role for the fabrication of the stable nano-emulsion or the research on the recovery of residual oil in porous media.

Stability Analysis for the Pohang Deep Geothermal Borehole (포항 심부 지열 시추공의 안정성 분석 연구)

  • Lee, Min-Jung;Chang, Chan-Dong;Lee, Jun-Bok;Lee, Tae-Jong;Hwang, Se-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.204-213
    • /
    • 2008
  • This paper presents the analysis about the stability of the Pohang deep geothermal borehole drilled in 2006. Severe wellhole instability problems such as collapse and tight hole occurred in weak rocks while drilling. Optimal mud pressure (mud window) required to prevent instability problems during drilling is obtained from analysis on in-situ stress and rock strength. The window is bounded by vertical stress in its upper limit and by either collapse pressure or pore pressure in its lower limit. Mud window varies with different types of rocks. In the top-most semi-consolidated mudstone formation, no mud window can secure borehole stability. In some weak rock types (basic dyke and crystal tuff), the borehole pressure needs to be higher by $50{\sim}60%$ than hydrostatic pressure. That means a mud density of 1.5 g/$cm^3$ or higher should be applied during drilling in order to prevent excessive collapse around the borehole.

Analysis of Consistency and Accuracy for the Finite Difference Scheme of a Multi-Region Model Equation (다영역 모델 방정식의 유한차분계가 갖는 일관성과 정화성 분석)

  • 이덕주
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.1
    • /
    • pp.3-12
    • /
    • 2000
  • The multi-region model, to describe preferential flow, is an equation representing solute transport in soils by dividing soil into numerous pore groups and using the hydraulic properties of the soil. As the model partial differential equation (PDE) is solved numerically with finite difference methods. a modified equivalent partial differential equation(MEPDE) of the partial differential equation of the multi-region model is derived to analyze the accuracy and consistency of the solution of the model PDE and the Von Neumann method is used to analyze the stability of the finite difference scheme. The evaluation obtained from the MEPDE indicated that the finite difference scheme was found to be consistent with the model PDE and had the second order accuracy The stability analysis is performed to analyze the model PDE with the amplification ratio and the phase lag using the Von Neumann method. The amplification ratio of the finite difference scheme gave non-dissipative results with various Peclet numbers and yielded the most high values as the Peclet number was one. The phase lag showed that the frequency component of the finite difference scheme lagged the true solution. From the result of the stability analysis for the model PDE, it is analyzed that the model domain should be discretized in the range of Pe < 1.0 and Cr < 2.0 to obtain the more accurate solution.

  • PDF

Analysis of Quartz Contents by XRD and FTIR in Respirable Dust from Various Manufacturing Industries Part 2 - Ceramics, Stone, Concrete, Glass and Briquets, etc. (제조업체에서 발생하는 호흡성분진중 XRD와 FTIR를 이용한 결정형유리규산 농도의 분석 제2부 : 요업, 석재, 콘크리트, 유리, 연탄 및 기타사업장)

  • Kim, Hyunwook;Phee, Young Gyu;Roh, Young Man;Won, Jeoung Il
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.1
    • /
    • pp.99-111
    • /
    • 1999
  • The purpose of this study was to evaluate crystalline silica contents in airborne respirable dusts from various manufacturing industries and to compare analytical ability of two different methods of quantifying crystalline silica, X-ray diffraction(XRD) and Fourie transform infrared spectroscopy(FTIR). Various manufacturing industries with a history of having pneumoconiosis cases and also known to generate dusts containing crystalline silica were investigated. These industries include: ceramics, brick, concrete, and abrasive material etc. The personal respirable dust samples were collected using l0mm, Dorr-Oliver nylon cyclone equipped with 37mm, $5{\mu}m$ pore size. polyvinylchloride (PVC) filters as collection media. All samples were weighed before and after sampling and were pretreated according to the NIOSH sampling and analytical methods 7500, and 7602 for dust collection and quartz analysis. A total of 48 samples were collected from these industries. Initial analyses of these samples showed log-normal distributions for dust and quartz concentrations. Some results from ceramics and stone exceeded current Korean Occupational Exposure Limits. The average concentrations of personal respirable dust by cyclone were 0.43, 0.24, 0.26, 0.42, 0.53 and $0.29mg/m^3$ in ceramics, stone, concrete, glass, briquets, and others, respectively. A comparison of performance of two analytical methods for quantifying crystalline silica was performed using data from ceramics. The results showed that no significant difference was found between two methods for ceramics. The mean crystalline silica contents determined by XRD were 3.41 % of samples from briquets and 7.18 % from ceramics and were 2.58 % from concrete and 10.33 % from ceramics by FTIR. For crystalline silica analysis, two analytical techniques were highly correlated with $r^2=0.81$ from ceramics. Both cristobalite and tridymite were not detected by XRD and FTIR.

  • PDF

Piping Analysis of Reservoir Embankment due to Leakage of Buried Box Culvert (저수지 제체 내 배수통관의 누수로 인한 파이핑 분석)

  • Kim, Han il;Yang, Hak Young;Kim, Young Muk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.787-799
    • /
    • 2017
  • Although the long-term leakage between the box culvert and the soil contact surface is one of the main causes of the failure in the embankment of the reservoir, there is a little studies on this matter. If a leakage occurs by the structure such as the buried box culvert of reservoir embankment is partially damaged, it is difficult to observe and there is a possibility of damage caused by piping. For these reasons, more research is necessary. In this study, the embankment type of the reservoir is divided into the core type and the homogeneous type when the damaged box culvert passing through the embankment of the reservoir is leaked due to the differential behavior of materials like differential settlement. In view of the condition, the seepage analysis of 2D was performed according to the water level change. The result of the study shows that the possibility of piping increases at the upper part rather than the bottom part of the box culvert when the leakage occurs to the box culvert passing through the embankment of the reservoir. Particularly, it is considered that the presence of the core helps to maintain the seepage stability of the embankment in case where the leakage occurs at the downstream side of the embankment. Also, if there is a drastic decrease on the internal pore water pressure in the embankment of reservoir, it is necessary to consider the possibility of piping.

Implementation of Coupled Hydro-Mechanical Problems in Partially Saturated Soils (불포화 지반에 물의 침투와 흙의 변형이 사면의 안정성에 미치는 영향)

  • Kim, Jaehong;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.5
    • /
    • pp.35-43
    • /
    • 2010
  • Partially saturated permeability should be defined by the function of suction (or degree of saturation) and porosity. However, commercial software and most researchers' model often describe as the function of suction. The stability of a soil slope can be affected by both hydraulic and shear strength properties of partially saturated soils. For both studies, we generally use an uncoupled seepage analysis program Seep/W(Geo-Slope, 2007) and a series stress-deformation analysis program Sigma/W, or slope stability analysis program Slope/W. Seep/W is performed for simulations of partially saturated flow problems in non-deformable soil media. However, under real situations, the water flow processes in a deformable soil are influenced by soil skeleton movement and the pore water pressure changed due to seepage will lead to changes in stresses and to deformation of a soil. Many researchers are currently developing their models for solving coupled hydro-mechanical problems to simulate slope stability during a rainstorm. For a proper implementation in the field, the developed model should be still needed in order to achieve appropriate accuracy of the solution for coupled hydro-mechanical problems in soil slope stability. Thus, the paper presents the comparison of slope stability between uncoupled and coupled analyses of seepage and stress deformation problems.

Relationship between Environmental Factors and Macrobenthos Assemblages in Geum Estuary Tidal-flat (금강하구 갯벌 내 환경요인과 저서성무척추동물 군집 분포의 상관관계)

  • Yoo, Jae-Won;Lee, Chae-Lin;Park, Mi-Ra;Yoon, Jihyun;Kang, Sung-Ryong
    • Journal of Wetlands Research
    • /
    • v.21 no.1
    • /
    • pp.84-94
    • /
    • 2019
  • The Seocheon and Yubu Island mudflats in Geum Estuary are important stopover sites for migratory birds as energy supplementation area in the East Asia-Australasian Flyway. Benthic invertebrates in the tidal flats are important food resources for the migratory birds. In other words, benthic invertebrates in the tidal flats play an important ecological role in energy flow. This study was conducted to investigate the relationship between benthic invertebrate assemblages and environmental factors in Seocheon and Yubudo tidal flats in the Geum Estuary. As a result of the benthic invertebrate assemblage during the fall migration season, the total species number was 147, density and biomass were $1,772{\pm}1,342individuals/m^2$ and $445.1{\pm}807.6g/m^2$, respectively. Based on the appearance species and the density data, the result of analysis of mutual similarity among sampling sites was divided into two groups. Group A was the Macrophthalmus-Heteromastus community and Group B was the Spio-Urothoe-Mandibulophoxus community. Group B showed higher mean species number, density and biomass than Group A. The BIO-ENV analysis showed that the benthic invertebrate assemblages were most affected by the combination of sand content % and sediment sorting (${\rho}=0.500$). The variables of significant relationship with species number and biomass were sediment sorting (p=0.015) and the pore water DO(Dissolved Oxygen, p=0.003) in sediment, respectively.

Gas Sorption Analysis of Metal-organic Frameworks using Microresonators (마이크로진동자 기반 금속유기골격체의 기체 흡탈착 분석)

  • Kim, Hamin;Choi, Hyun-Kuk;Kim, Moon-Gab;Lee, Young-Sei;Yim, Changyong
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.11-16
    • /
    • 2022
  • Metal-organic frameworks (MOFs) are porous materials with nano-sized pores. The degree of gas adsorption and pore size can be controlled according to types of metal ions and organic ligands. Many studies have been conducted on MOFs in the fields of gas storage and separation, and gas sensors. For rapid and quantitative gas adsorption/desorption analyses, it is necessary to form various MOF structures in uniform films on a sensor surface. In this review, some of representative direct methods for uniformly synthesizing MOFs such as MIL-53 (Al), ZIF-8, and Cu-BDC from anodized aluminum oxide, zinc oxide nanorods, and copper thin films, respectively on the surface of a microresonator are highlighted. In addition, the operation principle of quartz crystal microbalance and microcantilever, which are representative microresonators, and the interpretation of signals that change when gas is adsorbed to MOFs are covered. This is intended to enhance the understanding of gas adsorption/desorption analysis of MOFs using microresonators.

Instrumentation Management of Differential Settlement of the Deep Soft Ground with Dredged Clay Reclaimed in the Upper (대심도 준설 매립지반에서의 층별침하 계측관리에 관한 사례 연구)

  • Tae-Hyung Kim;Seung-Chan Kang;Ji-Gun Chang;Soung-Hun Heo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.1
    • /
    • pp.87-96
    • /
    • 2023
  • There are a lot of difference between the surface settlement and the differential settlement measured at the Busan New Port, where the dredged and reclaimed clay layer exists and below the clay is originally thickly distributed. To find the cause and solution of this, the actual conditions of each differential settlement used for the soft ground improvement, characteristics, installation method, measurement frequency, measurement data management, and data analysis of each type were considered. In the deep soft ground improvement work where large deformation occurs, the bending deformation of the screw-type differential settlement gauge is less than that of other types of measuring instruments, so there is less risk of loss, and the reliability of data is relatively high as the instruments are installed by drilling for each stratum. Since the greater the amount of high-precision settlement measurement data, the higher the settlement analysis precision. It is necessary to manage with higher criteria than the measurement frequency suggested in the standard specification. For the data management of the differential settlement gauge, it is desirable to create graphs of the settlement and embankment height of the relevant section over time, such as surface, differential, and settlement of pore water pressure gauge for each point. In the case of multi-layered ground with different compression characteristics, it is more appropriate to perform settlement analysis by calculating the consolidation characteristics of each stratum using a differential settlement data.

Analysis of Stability and Behavior of Slope with Solar Power Facilities Considering Seepage of Rainfall (태양광 발전시설이 설치된 사면의 강우시 침투를 고려한 안정성 및 거동 분석)

  • Yu, Jeong-Yeon;Lee, Dong-Gun;Song, Ki-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.7
    • /
    • pp.57-67
    • /
    • 2023
  • Slope failures during rainfall have been observed in mountainous areas of South Korea as a result of the presence of solar power facilities. The seepage behavior and pore pressure distribution differ from typical slopes due to the presence of impermeable solar panels, and the load imposed by the solar power structures also affects the slope behavior. This study aims to develop a method for evaluating the stability of slopes with solar power facilities and to analyze vulnerable points by considering the maximum slope displacement. To assess the slope stability and predict behavior while considering rainfall seepage, a combined seepage analysis and finite difference method numerical analysis were employed. For the selected site, various variables were assumed, including parameters related to the Soil Water Characteristic Curve, strength parameters that satisfy the Mohr-Coulomb failure criterion, soil properties, and topographic factors such as slope angle and bedrock depth. The factors with the most significant influence on the factor of safety (FOS) were identified. The presence of solar power facilities was found to affect the seepage distribution and FOS, resulting in a decreasing trend due to rainfall seepage. The maximum displacement points were concentrated near the upper (crest) and lower (toe) sections of the slope.