• Title/Summary/Keyword: pore analysis

Search Result 1,250, Processing Time 0.026 seconds

Preparation and Characterization of Fe-Ni-Pt Nanocatalyst for Anion Exchange Membrane in Alkaline Electrolysis (음이온 교환막 수전해용 Fe-Ni-Pt 나노촉매 제조 및 특성)

  • JAEYOUNG LEE;HONGKI LEE
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.5
    • /
    • pp.421-430
    • /
    • 2023
  • Fe-Ni-Pt nanocatalysts were loaded on carbon black powders which were synthesized by a spontaneous reduction reaction of iron (II) acetylacetonate, nickel (II) acetylacetonate and platinum (II) acetylacetonate. The morphology and the loading weight of Fe-Ni-Pt nanoparticles were characterized by transmission electron microscopy and thermogravimetric analyzer. The amount of Fe-Ni-Pt catalyst supported on the carbon black surface was about 6.42-9.28 wt%, and the higher the Fe content and the lower the Pt content, the higher the total amount of the metal catalyst supported. The Brunauer-Emmett-Teller Analysis (BET) specific surface area of carbon black itself without metal nanoparticles supported was 233.9 m2/g, and when metal nanoparticles were introduced, the specific surface area value was greatly reduced. This is because the metal nanocatalyst particles block the pore entrance of the carbon black, and thereby the catalytic activity of the metal catalysts generated inside the pores is reduced. From the I-V curves, as the content of the Pt nanocatalyst increased, the electrolytic properties of water increased, and the activity of the metal nanocatalyst was in the order of Pt > Ni > Fe.

A Study on the Analysis of Concrete Vertical form Demolding Timing Considering the Relationship between the Type of Coarse Aggregate and Ultrasonic Pulse Velocity (굵은 골재의 종류와 초음파 속도의 관계성을 고려한 콘크리트 수직 거푸집 해체 시점 분석에 관한 연구)

  • Nam, Young-Jin;Kim, Won-Chang;Choi, Hyeong-Gil;Lee, Tae-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.6
    • /
    • pp.683-692
    • /
    • 2023
  • This research assesses the mechanical properties of concrete, utilizing both normal and lightweight aggregates, through measurements of compressive strength and ultrasonic pulse velocity. The study observed that concrete with normal aggregates exhibited higher compressive strength in its initial stages, whereas concrete with lightweight aggregates showed increased strength over time, likely attributed to the higher water absorption rate of lightweight aggregates. Ultrasonic pulse velocity generally registered higher in normal aggregate concrete, barring a specific duration, presumably due to variations in the internal pore structure of the aggregates. The correlation coefficient(R2) for the strength prediction equation, derived from the relationship between compressive strength and ultrasonic pulse velocity, exceeds 0.95. This high correlation suggests that the predictive equation based on these experimental findings is a reliable method for estimating concrete strength.

Analysis of Volumetric Deformation Influence Factor after Liquefaction of Sand using Cyclic Direct Simple Shear Tests (CDSS 실험을 이용한 모래의 액상화 후 체적변형 영향인자 분석)

  • Herrera, Diego;Kim, Jongkwan;Kwak, Tae-Young;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.65-75
    • /
    • 2024
  • This study investigates liquefaction-induced settlement through strain-controlled tests using a cyclic direct simple shear device on clean sand specimens. By focusing on the accumulated shear strain, soil density, sample preparation method, and cyclic waveshape, this study attempts to enhance the understanding of soil behavior under seismic loading and its further deformation. Results from tests conducted on remolded samples reveal insights into excess pore water pressure development and post-liquefaction volumetric strain behavior, with denser samples exhibiting lower volumetric strains than looser samples. Similarly, the correlation between the frequency and amplitude variations of the wave and volumetric strain highlights the importance of wave characteristics in soil response, with shear strain amplitude changes, varying the volumetric strain response after reconsolidation. In addition, samples prepared under moist conditions exhibit less volumetric strain than dry-reconstituted samples. Overall, the findings of this study are expected to contribute to predictive models to evaluate liquefaction-induced settlement.

Carbon Dioxide Adsorption Study of Biochar Produced from Shiitake Mushroom Farm by-product Waste Medium (표고버섯 농가 부산물 폐배지 기반 바이오차의 이산화탄소 흡착 연구)

  • Gyuseob Song;Jinseung Kim;Juhyoung Park;Younghoon Noh;Youngchan Choi;Youngjoo Lee;Kyubock Lee
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.135-144
    • /
    • 2024
  • The present study investigated waste medium from a domestic shiitake mushroom farm, which was pyrolyzed to produce biochar. The yield rate of the biochar was compared after exposure to various pyrolysis temperature conditions, and the characteristics of the produced biochar were analyzed. The present study focused on the carbon dioxide (CO2) adsorption capacity of the resulting biochar. The CO2 adsorption capacity exhibited a correlation with the pyrolysis temperature of the biochar, with increasing temperatures resulting in higher CO2 adsorption capacities. Brunauer-Emmett-Teller (BET) analysis showed that the CO2 adsorption capacity was related to the surface area and pore volume of the biochar. Calcium is added to the process of producing mushroom medium. Experiments were performed to investigate the CO2 adsorption capacity of the biochar from the waste medium with the addition of calcium. In addition, CO2 adsorption experiments were conducted after the pyrolysis of kenaf biochar with the addition of calcium. The results of these experiments show that calcium affected the CO2 adsorption capacity.

Benchmark Numerical Simulation on the Coupled Behavior of the Ground around a Point Heat Source Using the TOUGH-FLAC Approach (TOUGH-FLAC 기법을 이용한 점열원 주변지반의 복합거동에 대한 벤치마크 수치모사)

  • Dohyun Park
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.127-142
    • /
    • 2024
  • The robustness of a numerical method means that its computational performance is maintained under various modeling conditions. New numerical methods or codes need to be assessed for robustness through benchmark testing. The TOUGH-FLAC modeling approach has been applied to various fields such as subsurface carbon dioxide storage, geological disposal of spent nuclear fuel, and geothermal development both domestically and internationally, and the modeling validity has been examined by comparing the results with experimental measurements and other numerical codes. In the present study, a benchmark test of the TOUGH-FLAC approach was performed based on a coupled thermal-hydro-mechanical behavior problem with an analytical solution. The analytical solution is related to the temperature, pore water pressure, and mechanical behavior of a fully saturated porous medium that is subjected to a point heat source. The robustness of the TOUGH-FLAC approach was evaluated by comparing the analytical solution with the results of numerical simulation. Additionally, the effects of thermal-hydro-mechanical coupling terms, fluid phase change, and timestep on the computation of coupled behavior were investigated.

The preparation of surface-modified granular activated carbon (GAC) to enhance Perfluorooctanoic acid (PFOA) removal and evaluation of adsorption behavior (입상 활성탄 표면 개질을 통한 과불화옥탄산 (PFOA) 제거 향상 및 특성 평가)

  • Jeongwoo Shin;Byungryul An
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.4
    • /
    • pp.177-186
    • /
    • 2023
  • Perfluorooctanoic acid(PFOA) was one of widely used per- and poly substances(PFAS) in the industrial field and its concentration in the surface and groundwater was found with relatively high concentration compared to other PFAS. Since various processes have been introduced to remove the PFOA, adsorption using GAC is well known as a useful and effective process in water and wastewater treatment. Surface modification for GAC was carried out using Cu and Fe to enhance the adsorption capacity and four different adsorbents, such as GAC-Cu, GAC-Fe, GAC-Cu(OH)2, GAC-Fe(OH)3 were prepared and compared with GAC. According to SEM-EDS, the increase of Cu or Fe was confirmed after surface modification and higher weight was observed for Cu and Fe hydroxide(GAC-Cu(OH)2 and GAC-Fe(OH)3, respectively). BET analysis showed that the surface modification reduced specific surface area and total pore volumes. The highest removal efficiency(71.4%) was obtained in GAC-Cu which is improved by 17.9% whereas the use of Fe showed lower removal efficiency compared to GAC. PFOA removal was decreased with increase of solution pH indicating electrostatic interaction governs at low pH and its effect was decreased when the point of zero charges(pzc) was negatively increased with an increase of pH. The enhanced removal of PFOA was clearly observed in solution pH 7, confirming the Cu in the surface of GAC plays a role on the PFOA adsorption. The maximum uptake was calculated as 257 and 345 ㎍/g for GAC and GAC-Cu using Langmuir isotherm. 40% and 80% of removal were accomplished within 1 h and 48 h. According to R2, only the linear pseudo-second-order(pso) kinetic model showed 0.98 whereas the others obtained less than 0.870.

Effect of a sludge-based biochar addition on MBR efficiency for wastewater treatment (잉여슬러지 기반 바이오차의 투입이 MBR 공정 하수처리 효율에 미치는 영향)

  • Taelim Jang;Wonjung Song;Chehyeun Kim;Jihun Lee;Jiwon Han;Jihyang Kweon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.38 no.4
    • /
    • pp.209-221
    • /
    • 2024
  • This study explored effects of a sludge-based biochar addition on nitrogen removal of membrane bioreactor (MBR) for wastewater treatment. The membrane fouling reduction by the biochar addition was also investigated. A dose of 3 g/L of the biochar was applied to an MBR (i.e., BC-MBR) and treatment efficiencies of organic matter and nutrient were analyzed. The MBRs with powdered activated carbon (i.e., AC-MBR) and without any additives were also operated in parallel. The average removals of COD and TN were improved with the biochar addition compared to those with the control MBR. Interestingly, operational duration was also increased with biochar addition. The CLSM analysis revealed that biomass amounts of BC-MBR and AC-MBR were reduced by more than 40%, and thickness of the biofilm attached to the membrane surface also was decreased. The physical properties of biochar surfaces were compared with a commercial powdered activated carbon. The specific surface area with 38 m2/g and pore volume with 0.13 cm3/g of the biochar were much smaller than those of the powdered activated carbon, which were 1100 m2/g and 0.67 cm3/g, respectively. Manufacturing conditions for the biochar production needs to be further investigated for enhancing physical properties for adsorption and biological improvement.

Effect of domestic sewage on macro-micro physical and mechanical properties of soil

  • Zhi-Fei Li;Wei Liu;Yu-Ao Li;Yi Li;Shu-Chang Zhang;Yin-Lei Sun
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.3
    • /
    • pp.247-262
    • /
    • 2024
  • Domestic sewage can greatly affect the macro-micro physical-mechanical properties of building foundation soils. In order to investigate the effect of domestic sewage on physical and mechanical properties of soils, the physicochemical properties of three groups of different concentrations of domestic sewage contaminated soil were tested through indoor experiments. Combined with scanning electron microscopy, X-ray diffraction experiments, and grey relational analysis, the degree of influence of different concentrations of domestic sewage on the physicochemical properties of soil was compared and analyzed from multiple perspectives such as microstructure and mineral composition, revealing the influencing mechanism of soil pollution by domestic sewage. The results showed that under the immersion of contaminated water, the color of the soaking water turned black first and then yellow, and brownish yellow secretions appeared on the surface of the soil samples. The moisture content, specific gravity, density, and pore ratio index of the soil samples immersed in 50% and 100% domestic sewage decreased with the increase of sewage concentration, while the liquid limit of the soil samples changed in the opposite direction. The immersion time had little effect on the slope of the compression curve of the soil samples soaked in tap water. For the soil samples immersed in domestic sewage, the slope of the compression curve and the compression coefficient increased with the increase of domestic sewage concentration and immersion time, while the compression modulus showed the opposite trend. In the soil samples immersed in tap water, there were a large number of small particles and cementitious substances, and the structure was relatively dense. With the increase of domestic sewage concentration, the microstructure of the soil changed significantly, with the appearance of sigle particle structure, loose and disorderly arrangement of particles, increased and enlarged pores, gradual reduction of small particle substances and cementitious substances, and the soil structure transformed from compact to loose. The research findings can provide theoretical reference for contaminated geotechnical engineering.

An Analytical Study of Chloride Ion Diffusion in Concrete via Cellular Automaton Method (셀룰러 오토마톤 법을 이용한 콘크리트의 염화물이온 확산현상의 해석적 연구)

  • Kim, Jeong-Jin;Seok, Won-Kyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.5
    • /
    • pp.541-552
    • /
    • 2024
  • This study introduces a new analytical model known as the Cellular Automaton Method(CAM) designed to predict the degree of deterioration in concrete, taking into account its complex pore structure. The CAM model assesses the impacts of moisture migration, driven by capillary action and pressure differentials at the gas-liquid interface, which are influenced by the distribution of pores. It also evaluates how porosity and diffusion coefficients affect the penetration of chloride ions. The model's application revealed distinct moisture movement patterns in concrete structures, distinguishing between those with porosity levels below and above 40 percent. Additionally, it facilitated a comparison and analysis of chloride ion diffusion phenomena, based on diffusion coefficients in areas penetrated by moisture, against results obtained from the Finite Element Method(FEM). The comparison showed a maximum deviation of only 0.989 percent between the predicted outcomes of the FEM and CAM, demonstrating substantial agreement and validating CAM's efficacy in simulating the diffusion processes of chloride ions within concrete under actual salt damage conditions. Thus, CAM proves to be a reliable tool for modeling and anticipating deterioration in concrete structures exposed to saline environments.

Effect of Composition of γ-Al2O3/SiO2 Mixed Support on Fischer-Tropsch Synthesis with Iron Catalyst (철 기반 촉매의 Fischer-Tropsch 합성에서 γ-Al2O3/SiO2 혼합 지지체 조성의 영향)

  • Min, Seon Ki;No, Seong-Rae;You, Seong-sik
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.436-442
    • /
    • 2017
  • Fischer-Tropsch synthesis is the technology of converting a syngas (CO+$H_2$) derived from such as coal, natural gas and biomass into a hydrocarbon using a catalyst. The catalyst used in the Fischer-Tropsch synthesis consists of active metal, promoter and support. The types of these components and composition affect the reaction activity and product selectivity. In this study, we manufactured an iron catalyst using ${\gamma}-Al_2O_3/SiO_2$ mixed support (100/0 wt%, 75/25 wt%, 50/50 wt%, 25/75 wt%, 0/100 wt%) by an impregnation method to investigate how the composition of ${\gamma}-Al_2O_3/SiO_2$ mixed support effects on the reaction activity and product selectivity. The physical properties of catalyst were analyzed by $N_2$ physical adsorption and X-Ray diffraction method. The Fischer-Tropsch synthesis was conducted at $300^{\circ}C$, 20bar in a fixed bed reactor for 60h. According to the results of the $N_2$ physical adsorption analysis, the BET surface area decreases as the composition of ${\gamma}-Al_2O_3$ decreases, and the pore volume and pore average diameter increase as the composition of ${\gamma}-Al_2O_3$ decreases except for the composition of ${\gamma}-Al_2O_3/SiO_2$ of 50/50 wt%. By the results of the X-Ray diffraction analysis, the particle size of ${\alpha}-Fe_2O_3$ decreases as the composition of ${\gamma}-Al_2O_3$ decreases. As a result of the Fischer-Tropsch synthesis, the CO conversion decreases as the composition of ${\gamma}-Al_2O_3$ decreases, and the selectivity of C1-C4 decreases until the composition of ${\gamma}-Al_2O_3$ was 25 wt%. In contrast, the selectivity of C5+ increases until the composition of ${\gamma}-Al_2O_3$ is 25 wt%.