• Title/Summary/Keyword: pore analysis

Search Result 1,250, Processing Time 0.021 seconds

Mechanism of improving quality of dry-aged pork loins in scoria-containing onggi, Korean earthenware as a storage container

  • Sung-Su Kim;Dong-Jin Shin;Dong-Gyun Yim;Hye-Jin Kim;Doo Yeon Jung;Hyun-Jun Kim;Cheorun Jo
    • Animal Bioscience
    • /
    • v.36 no.5
    • /
    • pp.797-809
    • /
    • 2023
  • Objective: Many scientists have investigated solutions to reduce microbiological risks in dry-aged meat after the dry-aging technology was revived for high quality and value-added premium meat product in the market. This study aimed to investigate the effect of scoria powder in onggi (Korean earthenware) on the meat quality of pork loins during 21 days of dry aging and to elucidate its mechanism of action. Methods: The pork loins were randomly divided into three groups: aged in vacuum-packaging, onggi containing red clay only (OR), and onggi containing 30% red clay and 70% scoria powder (OS). Microbial analyses (total plate count and Lactobacillus spp.) and physicochemical analyses (pH, shear force, volatile basic nitrogen [VBN], water activity, 2-thiobarbituric acid reactive substances, water content, water holding capacity, cooking loss, and color analysis) of aged meat were conducted. Far-infrared ray emission, quantification of immobilized L. sakei and microstructure of onggi were investigated to understand the mechanism. Results: On day 21, the meat aged in OS exhibited lower pH, shear force, VBN, and water activity than those aged in OR, along with an increase in the number of Lactobacillus spp. OS had a smaller pore diameter than OR, implying lower gas permeability, which could promote the growth of L. sakei. Conclusion: OS improved the microbiological safety and storage stability of pork loin during dry aging by increasing number of Lactobacillus spp. possibly due to low permeability of OS.

Numerical Modeling of Sloping Ground under Earthquake Loading Using UBCSAND Model (UBCSAND모델을 이용한 사면의 동적거동해석)

  • Park Sung-Sik;Kim Young-Su;Kim Hee-Joong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.61-71
    • /
    • 2006
  • A numerical procedure is presented fur evaluating seismic liquefaction on sloping ground sites. The procedure uses a fully coupled dynamic effective stress analysis with a plastic constitutive model called UBCSAND. The model was first calibrated against laboratory element behavior. This involved cyclic simple shear tests performed on loose sand with and without initial static shear stress. The numerical procedure is then verified by predicting a centrifuge test with a slope performed on loose Fraser River sand. The predicted excess pore pressures, accelerations and displacements are compared with the measurements. The results are shown to be in good agreement. The shear stress reversal patterns depend on static and cyclic shear stress levels and are shown to play a key role in evaluating liquefaction response in sloping ground sites. The sand near the slope has low effective confining stress and dilates more. When no stress reversals occur, the sand behaves in a stiffer manner that curtails the accumulated downslope displacements. The numerical procedure using UBCSAND can serve as a guide for design of new soil structures or retrofit of existing ones.

Prediction of Residual Settlement of Ground Improved by Vertical Drains Using the Elasto-Viscous Consolidation Model (I) - Verification of the Applicability of Theory - (탄-점성 압밀이론에 의한 버티칼 드레인 타설지반의 잔류침하 예측 (I) -이론의 적용성 검증)

  • Baek, Won-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.69-77
    • /
    • 2007
  • In this study, the consolidation behavior of clayey ground improved by vertical drain method was analyzed by the finite difference method based on the three-dimensional elasto-viscous consolidation theory, which can express the behavior of the secondary consolidation without considering the distinction of the normally consolidated and overconsolidated states. And the applicability of the elasto-viscous consolidation theory was discussed by comparing with the test results obtained from the model test of ground improved by vertical drain system. From these results, it is found that the amount of the settlement when the excess pore water pressure almost dissipated in the clay ground with vertical drains became smaller than that of the one-dimensional condition, and then the amount and rate of the residual settlement at secondary consolidation process became larger than those of the one-dimensional condition. finally, the effect of soil parameter on behavior of consolidation process was investigated by the results of a series of numerical analysis for the normalized and overconsoldiated states.

Estimation of Compressive Strength for Cemented River Sand (고결된 하상모래의 압축강도 추정)

  • Jeong, Woo-Seob;Yoon, Gil-Lim;Kim, Byung-Tak
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.67-78
    • /
    • 2008
  • In this study, artificial cemented sand made of a few portland cement and Nak-Dong river sand was researched closely to investigate cementing effect quantitatively through unconfined tests and triaxial tests. The peak strength and elastic modulus increased and dilation of cemented sand was restricted by the cementation, but after breakage of the cementation, dilation and negative excess pore water pressure increased. In stress-strain curve, strain-softening behavior appeared in drained condition but strain-hardening behavior was appeared in undrained condition as a result of the increase of effective stress. The test was quantitatively analyzed by multiple regression models, correlating each response variable with input variable. The equations are valid only over the range investigated. Its adjusted coefficient of determination was $0.81{\sim}0.91$, and dry density is important factor for estimating strength of cemented sand.

Investigating the Cause of Ash Deposition and Equipment Failure in Wood Chip-Fueled Cogeneration Plant (우드칩을 연료로 하는 열병합발전소의 회분 퇴적 및 설비 고장 원인 분석)

  • Min Ji Song;Woo Cheol Kim;Heesan Kim;Jung-Gu Kim;Soo Yeol Lee
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.187-192
    • /
    • 2023
  • The use of biomass is increasing as a response to the convention on climate change. In Korea, a method applied to replace fossil fuels is using wood chips in a cogeneration plant. To remove air pollutants generated by burning wood chips, a selective denitrification facility (Selective catalytic reduction, SCR) is installed downstream. However, problems such as ash deposition and descaling of the equipment surface have been reported. The cause is thought to be unreacted ammonia slip caused by ammonia ions injected into the reducing agent and metal corrosion caused by an acidic environment. Element analysis confirmed that ash contained alkali metals and sulfur that could cause catalyst poisoning, leading to an increase in the size of ash particle and deposition. Measurement of the size of ash deposited inside the facility confirmed that the size of ash deposited on the catalyst was approximately three times larger than the size of generally formed ash. Therefore, it was concluded that a reduction in pore area of the catalyst by ash deposition on the surface of the catalyst could lead to a problem of increasing differential pressure in a denitrification facility.

Fabrication of an ultra-fine ginsenoside particle atomizer for drug delivery through respiratory tract (호흡기를 통한 약액 전달을 위한 진세노사이드 초미세입자 분무장치 제작)

  • Byung Chul Lee;Jin Soo Park;Woong Mo Yang
    • Journal of Convergence Korean Medicine
    • /
    • v.2 no.1
    • /
    • pp.5-12
    • /
    • 2021
  • Objectives: The purpose of this study is to fabricate an ultra-fine ginsenoside particle atomizer that can provide a new treatment method by delivering ginsenoside components that have a therapeutic effect on respiratory diseases directly to the lungs. Methods: We fabricated the AAO vibrating mesh by using the micromachining process. The starting substrate of an AAO wafer has a 350nm pore diameter with 50㎛ thickness. A photomask having several 5㎛ opening holes with a 100㎛ pitch was used to separate each nanopore nozzle. The photoresist structure was optimized to pattern the nozzle area during the lift-off process precisely. The commercial vibrating mesh was removed from OMRON's NE-U100 product, and the fabricated AAO vibrating mesh was installed. A diluted sample of 20mL with 30% red ginseng concentrate was prepared to atomize from the device. Results: As a result of liquid chromatography analysis before spraying the ginsenoside solution, ginsenoside components such as 20S-Rg3, 20R-Rg3, and Rg5 were detected. After spraying through the AAO vibrating mesh, ginsenosides of the same component could be detected. Conclusion: A nutrient solution containing ginsenosides was successfully sprayed through the AAO vibrating mesh with 350 nm selective pores. In particular, during the atomizing experiment of ginsenoside drug solution having excellent efficacy in respiratory diseases, it was confirmed that atomizing through the AAO vibrating mesh while maintaining most of the active ingredients was carried out.

Temperature Distribution of Wet-Mixed High Strength Sprayed Polymer Mortar for Fire Resistance of Tunnel (터널 내화용 고강도 습식 스프레이 폴리머 모르타르의 화재 발생시 내부온도분포)

  • Won, Jong Pil;Choi, Seok Won;Park, Chan Gi;Park, Hae Kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4C
    • /
    • pp.283-290
    • /
    • 2006
  • Concrete has advantages in fire situations as it is non-combustible and has low thermal conductivity. However, concrete that is not designed against fire can experience significant explosive spalling from the build-up of pore pressures and internal tensile stresses when heated. In this study, the performance of wet-mixed high strength sprayed polymer mortar for fire resistance of tunnel system was evaluated by experimentally and numerically. The fire test was performed in fire resistance(electric) furnace according to RABT(Richtlinien fur die Ausstatung und den Betrieb von $Stra{\beta}entunneln$) time heating temperature curve, so as to evaluate the temperature distribution with cover thickness of wet-mixed high strength sprayed polymer mortar for fire resistance of tunnel system. Based on experimental results and numerical analysis, the proper cover thickness of wet-mixed high strength sprayed polymer mortar determined the more than 4cm.

Consolidation Characteristics of Soft Ground in Suction Drain Method (석션드레인공법이 적용된 연약지반의 압밀특성에 관한 사례 분석)

  • Kim, Byung Il;Kim, Do Hyung;Kim, Soo Sam;Han, Sang Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.287-294
    • /
    • 2009
  • Suction Drain Method is a relatively new technique to improve soft ground using vacuum pressure which can be directly applied to the soft ground through drains that the pore water pressure around them are decreased without changing total stress. This can accelerate volume changes and increase strength of the ground. This paper shows the results of field test of the suction drain method applied at dredged and reclaimed clay. To evaluate the improvement effects of soft ground by the suction drain method, this paper analyzed real-time field measurements to the results of the laboratory tests and numerical analysis. The comparisons of the settlement and shear strength between suction drain method and surcharge preloading method show possibilities for replacement of the preloading methods. The settlements by suction drain method were 2.3 times larger and undrained shear strength were 300%~400% higher than surcharge method. Moreover, the water content is decreased about 30% and the preconsolidation pressure is increased about $0.52kgf/cm^2$.

Analysis of Stomatal Traits of Non-woody Plant Species Present in a Riparian Park Area in Nakdong River (낙동강 수변 공원 지역에 서식하는 초본 식물의 기공 형질 분석)

  • Myeong-geun Song;Ki-jung Nam
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.384-392
    • /
    • 2023
  • Stomatal pore is an important physiological trait that is closely linked to photosynthesis and transpiration as carbon dioxide and water vapor move through it between the atmosphere and plants. The present study investigated stomatal traits, such as stomatal density, index and size, of herbaceous native and alien plant species living in a riparian park on the Nakdong River to understand how those traits vary and to know if successful settlement of alien plants is attributed to those traits. There was no difference in stomatal density, index and size between native and alien plants with kidney-shaped stomata, suggesting that an empty ecological niche is not an essential prerequisite for the successful settlement of alien plants. Stomatal density showed a negative correlation with leaf thickness and leaf dry weight content (LMDC), but there was no correlation with Specific leaf area (SLA). All plants with kidney-shaped stomata had amphistomatous leaves, and the density and size of dumbell-shaped stomata were lower than those of kidney-shaped stomata.