• Title/Summary/Keyword: porcelain-fused-to-metal

Search Result 102, Processing Time 0.027 seconds

SHEAR BOND STRENGTH OF PORCELAIN REPAIR RESINS TO NONPRECIOUS CERAMO-METAL ALLOY (도재소부전장관 파절시 비귀금속과 도재수리용 레진간의 결합력에 관한 실험적 연구)

  • Ann, Joon-Young;Bae, Jung-Soo;Han, Dong-Hoo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.2
    • /
    • pp.195-209
    • /
    • 1991
  • When the porcelain fused to metal restorations were fractured at the metal interface, various techniques and materials for intraoral porcelain repair have been suggested. The purpose of this study was to investigate the effect of metal surface treatment method and water storage on the shear bond strength of four porcelain repair systems. : Clearfil(Kuraray), All-bond(Bisco), Superbond C & B(Sun Medical), Panavia OP(Kuraray). After the metal surfaces of the specimens were sandblasted by aluminum oxide or roughened by diamond point, they were stored in double deionized water(24 Hr., $37^{\circ}C$) and thermocycling was performed(24 Hr., 1024 cycles), and again half of specimes were stored in water bath(2 Months, $37^{\circ}C$). Mean shear bond strength and mode of failure were recorded. The results of this study were obtained as follows : 1. Differences were observed between the sandblasted and diamond - treated specimens in Clearfil, All-bond, and Superbond. No statistically significant differences were observed in Panavia. 2. The 2-month storage time significantly affected the bond strength of All-bond and Superbond. No statistically significant differences were observed in Clearfil and Panavia. 3. The failures were observed at the interface between opaque resin and the metal in Clearfil and All-bond. 4. The failures were observed at the interface between opaque resin and veneered resin in Panavia. The failures were observed at the interface between opaque resin and veneered resin in Superbond, but 40% of them were fractured at the interface between the metal and opaque resin after 2-month storage time.

  • PDF

A COMPARATIVE STUDY OF THE SHEAR BOND STRENGTH AND ADHESIVE FAILURE PATTERN OF METAL BRACKETS BONDED ON NATURAL TEETH AND PORCELAIN TEETH (자연 치관과 포세린 치관상에서 교정용 브라켓 부착시 전단 결합 강도와 파절 양상에 관한 비교 연구)

  • Lee, Hyun-Sun;Kim, Jong-Soo;Yoo, Seung-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.2
    • /
    • pp.195-204
    • /
    • 2008
  • Orthodontic brackets often need to be bonded to porcelain such as porcelain fused to metal crowns and porcelain jacket crowns. The purpose of this study was to evaluate the clinical usability of direct bonding system on porcelain teeth by measuring shear bond strength according to various conditions and observing adhesive failure patterns. The specimens, 20 maxillary premolars and 80 porcelain teeth that were produced by duplication of the labial surface of a maxillary first premolar were used and randomly divided into four groups of twenty teeth each. The 5 different preparation procedures tested: (1) application of 37% phosphoric acid on natural teeth, (2) sandblasting on porcelain surfaces, (3) sandblasting and application of 9.6% hydrofluoric acid on porcelain surfaces, (4) sandblasting and application of silane on porcelain surface, (5) sandblasting and application of 9.6% hydrofluoric acid and silane on porcelain surfaces. The metal brackets were bonded with Transbond $XT^{(R)}$ bonding material. The shear bond strength was tested by the micro universal testing machine(Kyung-Sung, Korea) and the amount of residual adhesive on the tooth surface after debonding was examined by stereoscope and assessed with an adhesive remnant index. The results of this study suggest that the direct bonding system on porcelain teeth with sandblasting, HF and porcelain primer is clinically useful.

  • PDF

Shade Matching Identification of in Vivo Natural Teeth and Porcelain-Fused-to-Metal Crowns (자연치와 도재관에 대한 색조선택의 동일성)

  • Cho, Hong-Kyu
    • Journal of Technologic Dentistry
    • /
    • v.29 no.1
    • /
    • pp.35-48
    • /
    • 2007
  • The purpose of this study was to evaluate shade selection using conventional visual assessment in vivo natural teeth and porcelain-fused-to-metal (PFM) crown. Maxillary central incisors, lateral incisors and canines of one hundred twenty four college women were used as vivo natural teeth. Fifty one PFM crown for maxillary central incisor fabricated by dental laboratory were used as experimental materials. Using Vitapan Classical Shade Guides, shade selection of natural teeth was measured by each college woman and shade selection of PFM crown was measured by three ceramists with more than ten years career. Both natural teeth and PFM crown shade selection were measured through Shade Eye-Ex. From the shade selection comparing, following results were obtained. The results were as follows: 1. The shade matching identification of natural teeth between the shade selection using Vitapan Classical Shade Guides and the shade selection using Shade Eye-Ex was 27.4% in maxillary central incisor, 13.7% in lateral incisor and 18.5% in canine. 2. Among the shade selection of PFM crown by three ceramists, the shade evaluation of three ceramists were same only in ten cases. In twenty case, those of two ceramists were same. 3. The shade matching identification of PFM crown between the shade selection using Vitapan Classical Shade Guides and the shade selection using Shade Eye-Ex was 38.6% in average. These results suggest that the shade selection using conventional visual assessment should be dealt with care in clinic and need a credible method for shade matching color.

  • PDF

The Effect of a Au Based Bonding Agent Coating on Non-Precious Metals-Ceramic Bond Strength (비귀금속 합금에 적용한 Au Based Bonding Agent가 금속-도재 결합에 미치는 영향)

  • Lee, Jung-Hwan;Ahn, Jae-Seok
    • Journal of dental hygiene science
    • /
    • v.9 no.4
    • /
    • pp.405-412
    • /
    • 2009
  • The purpose of this study investigated the effect of Au coating on adhesion between porcelain matrix and metal substructure interface. Titanium, Ni-Cr alloy and Co-Cr alloy are well known as proper metal for the dental restorations. The success of a porcelain fused to metal (PFM) restoration depends upon the quality of the porcelain-metal bond. However, adhesion between dental alloys and porcelain is related to diffusion of oxygen during ceramic firing. The excessive oxidized layers make hard adhesion between dental alloy and ceramic. Ni-Cr and Co-Cr specimens were divided into test and a control group and Titanium specimens were divided into three test groups and a control group. Each group had 20 specimens. The adhesion characteristics of porcelain and metal with Au coating layer and without Au coating layer were observed with scanning electron microscopy(SEM). The adhesion was evaluated by a biaxial flexure test and volume fraction of adherent porcelain was determined by SEM/EDS analysis. Result of this study suggest that Au coating layer is effective barrier to diffuse oxide layer completely protect non-precious alloys from oxidation during the porcelain firing. The SEM photomicrographs of cross-section specimens showed a smooth interface between Au coating layer and metals and porcelain which suggested proper chemical bonding, and no gap, porosity were observed. The mode of failure was mainly adhesive for Ti tested specimens, but mixed failures with adhesive and cohesive were observed in Ni-Cr and Co-Cr specimens. The adhesion between non-precious metals and porcelain would not be improved by Au coating agent. However, It is suggested that the continuous study is required further investigation and development.

  • PDF

FLEXION EFFECTS OF HEAT TREATMENT AND POST-SOLDRING OF CERAMO-METAL FIXED PARTIAL DENTURE FRAMEWORKS USING HOLOGRAPHIC INTERFEROMETRY (Holographic Interferometry를 이용한 하악 구치부 도재소부 전장관용 금속 구조물의 굴곡성향에 대한 연구)

  • Choi, Jin-Woong;Woo, Yi-Hyung;Choi, Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.4
    • /
    • pp.869-902
    • /
    • 1996
  • Flexion of a metal/ceramic fixed partial denture(EPD) frameworks under function can cause fracture of porcelain or deterioration of the cement seal. This study evaluated the flexion characteristics of three-unit mandibular FPD frameworks, repacing the second pre-molar under compressive load(200g, 400g). Testing was accompished with real-time holographic interferometry, using 6 porcelain fused-to metal frameworks. Tested alloys were non-precious alloy(Heracles, Holland), semi-precious alloy(Degudent U, Germany) and precious alloy(Degudent H, Germany). Changes of the fringe patterns according to the heat treatment(porcelain firing cycle), various loads(200g, 400g), occlusal forms(occlusal porcelain veneering, facial porcelain veneering), various alloys and post-soldering units were compared. Dental study model(Nissan dental products, Inc. D51DP-500A, Japan) and six 3-unit metal/ceramic fixed partial denture frameworks were used as experimental materials. 36 holograms were taken on fixed dental study model by using the 10mW He-Ne laser and real-time holographic interferometry. On the basis of this study, the following conclusions can be drawn : 1. In the frameworks for facial porcelain veneering, the semi-precious alloy framework was least deformed and precious alloy framework, non-precious alloy framework orderly before heat treatment, and the deformation was not shown great difference among three alloys after heat treatment and post-soldering. 2. In the frameworks for occlusal porcelain veneering, the precious alloy framework was greatest deformed and the deformation was not difference between semi-precious alloy framework and non-precious alloy framework before, after heat treatment, and the deformation was not shown great difference among three alloys after post soldering. 3. In the non-precious alloy frameworks for facial porcelain veneering and occlusal porcelain veneering, the deformation was greatly decreased after heat treatment and conversely increased after post-soldering. 4. In the semi-precious alloy framework for facial porcelain veneering, the deformation was not detectable after heat treatment and increased after post-solder. And in the frame-work for occlusal porcelain veneering, the deformation was slightly decreased after heat treatment and increased after post-soldering. 5. In the precious alloy framework for facial porcelain veneering, the deformation was greatly decreased after heat treatment and increased after post-soldering, And in the framework for occlusal porcelain veneering, the deformation was greatly decreased after heat treatment and decreased after post-soldering.

  • PDF

THE BOND CHARACTERISTICS OF PORCELAIN FUSED BY TITANIUM SURFACE MODIFICATION (타이타늄의 표면개질에 따른 도재 결합 특성)

  • Choi, Taek-Huw;Park, Sang-Won;Vang, Mong-Sook;Yang, Hong-So;Park, Ha-Ok;Lim, Hyun-Pil;Oh, Gye-Jeong;Kim, Hyun-Seung;Lee, Kwang-Min;Lee, Kyung-Ku
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.2
    • /
    • pp.169-181
    • /
    • 2007
  • Statement of problem: Titanium is well known as a proper metal for the dental restorations, because it has an excellent biocompatibility, resistance to corrosion, and mechanical property. However, adhesion between titanium and dental porcelains is related to the diffusion of oxygen to the reaction layers formed on cast-titanium surfaces during porcelain firing and those oxidized layers make the adhesion difficult to be formed. Many studies using mechanical, chemical and physical methods to enhance the titanium-ceramic adhesion have been actively performed. Purpose: This study meant to comparatively analyse the adhesion characteristics depending on different titanium surface coatings after coating the casts and wrought titanium surfaces with Au and TiN. Material and method: In this study, the titanium specimens (CP-Ti, Grade 2, Kobe still Co. Japan) were categorized into cast and wrought titanium. The wrought titanium was cast by using the MgO-based investment(Selevest CB, Selec). The cast and wrought titanium were treated with Au coating($ParaOne^{(R)}$., Gold Ion Sputter, Model PS-1200) and TiN coating(ATEC system, Korea) and the ultra low fusing dental porcelain was fused and fired onto the samples. Biaxial flection test was done on the fired samples and the porcelain was separated. The adhesion characteristics of porcelain and titanium after firing and the specimen surfaces before and after the porcelain fracture test were observed with SEM. The atomic percent of Si on all sample surfaces was comparatively analysed by EDS. In addition, the constituents of specimen surface layers after the porcelain fracture and the formed compound were evaluated by X-ray diffraction diagnosis. Result: The results of this study were obtained as follows : 1. The surface characteristics of cast and wrought titanium after surface treatment(Au, TiN, $Al_2O_3$ sandblasting) were similar and each cast and wrought titanium showed similar bonding characteristics. 2. Before and after the biaxial flection test, the highest atomic weight change of Si component was found in $Al_2O_3$ sandblasted wrought titanium(28.6at.% $\rightarrow$ 8.3at.%). On the other hand, the least change was seen in Au-Pd-In alloy(24.5at.% $\rightarrow$ 9.1at.%). 3. Much amount of Si components was uniformly distributed in Au and TiN coated titanium, but less amount of Si's was unevenly dispersed on Al2O3 sandblasting surfaces. 4. In X-ray diffraction diagnosis after porcelain debonding, we could see $Au_2Ti$ compound and TiN coating layers on Au and TiN coated surfaces and $TiO_2$, typical oxide of titanium, on all titanium surfaces. 5. Debonding of porcelain on cast and wrought titanium surface after the biaxial flection is considered as a result of adhesion deterioration between coating layers and titanium surfaces. We found that there are both adhesive failure and cohesive failure at the same time. Conclusion: These results showed that the titanium-ceramic adhesion could be improved by coating cast and wrought titanium surfaces with Au and TiN when making porcelain fused to metal crowns. In order to use porcelain fused to titanium clinically, it is considered that coating technique to enhance the bonding strength between coating kKlayers and titanium surfaces should be developed first.

EFFECT OF WATER CONTENT ON THE FLEXURAL STRENGTH DURING REFIRING IN DENIAL PORCELAIN (치과용 도재의 재소성 과정중 수분 함량이 강도에 미치는 영향)

  • Park Hye-Yang;Shim June-Sung;Lee Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.5
    • /
    • pp.656-673
    • /
    • 2003
  • Statement of problem : Long-term exposure of dental porcelain to saliva during temporary cementation of a porcelain-fused to metal (PFM) restoration could affect mechanical strength of dental porcelain if the restoration is refired. Purpose : This work was performed to verify the effect of water on the mechanical strength in aged dental porcelain. Material and method : 63 specimens(Vintage Metalbond opaque and opal powder) were distributed to three experimental groups ; non-water immersed control, immersed and pedried, and immersed and non-predired groups. The changes in flexural strength and fracture toughness after specimen refiring related to Fourier Transform Infrared (FT-IR) spectroscopy. Results : 1. The FT-IR reflectances assigned to molecular bonds of $H_2O$ were noted as significantly different between the first-fired group and three refired groups and between two water-immersed groups and control group after refiring(p<0.05). They were also significantly different between predried group and non-predried group after refiring(p<0.05) 2. For opal specimens, FT-IR absorbances for hydrogen bond of $H_2O$ and silanols were significantly higher in non-predried group than in predreid group(p<0.05). 3 Predried opal group showed the highest mean flexural strength(p<0.05). Non-predried group indicated higher mean flexural strength than control group(p<0.05). 4. The mean fracture toughness for predired group was higher than non-predried group(p<0.05). 5. The difference of leucite crystal size is noted between control group and water-immersed, predried group in scanning electron microscopic study(${\times}10000$).

A study on the difference of Ceramic fracture strength according to the metal depth (금속의 두께가 도재의 파절강도에 미치는 영향)

  • Shin, Mu-Hak;Choi, Un-Jae;Kim, Yoong-Won
    • Journal of Technologic Dentistry
    • /
    • v.27 no.1
    • /
    • pp.89-95
    • /
    • 2005
  • In the manufacture of ceramo-metal crown, difference of fracture strength according to the metal depth has been known to be an important influence on enough intensity and internal stress to endure an occlusion-pressure as well as aesthetics of rehabilitating similar colour such as natural teeth. Depth of ceramic material could be determined by that of metal in three groups: first case of thin depth, second case of thick depth, and third case of constant depth. For the enhancement of the fracture strength between metal and ceramic materials and aesthetic satisfaction, a study on the bonding force, fracture strength, and aesthetics have been required more. In this study, therefore metal coping were made in three groups of A, B and C by using both ceramic powder of Norithe and metal of Columbium, which have been used primarily in the market. A group was made in $0.2mm\times10mm\times10mm$, B group was made in $0.4mm\times10mm\times10mm$, and, C group was made in $0.8mm\times10mm\times10mm$, respectively. The number of metal coping in each group was 10, and total sample numbers used in this study were 30 metal copings. After these metal coping tissue were in the process of build-up in 1.5mm constant depth of porcelain, firing, and glazing, the fracture strength about each metal coping tissue was investigated using oil press. It was found that the average values of durable occlusion pressure for separation of ceramic material in the porcelain fused to metal crown (PFM) in the each group showed the increasing order of A group (30 bar), B group (42 bar), and C group (44 bar), respectively. Proper depth of metal coping in the PFM was considered to be 0.4mm in the B group because this metal size showed higher durable property to the occlusion pressure and better coupling strength in the ceramo-metal crown.

  • PDF

Physico-mechanical properties and prosthodontic applications of Co-Cr dental alloys: a review of the literature

  • Al Jabbari, Youssef S.
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.2
    • /
    • pp.138-145
    • /
    • 2014
  • Cobalt-Chromium (Co-Cr) alloys are classified as predominantly base-metal alloys and are widely known for their biomedical applications in the orthopedic and dental fields. In dentistry, Co-Cr alloys are commonly used for the fabrication of metallic frameworks of removable partial dentures and recently have been used as metallic substructures for the fabrication of porcelain-fused-to-metal restorations and implant frameworks. The increased worldwide interest in utilizing Co-Cr alloys for dental applications is related to their low cost and adequate physico-mechanical properties. Additionally, among base-metal alloys, Co-Cr alloys are used more frequently in many countries to replace Nickel-Chromium (Ni-Cr) alloys. This is mainly due to the increased concern regarding the toxic effects of Ni on the human body when alloys containing Ni are exposed to the oral cavity. This review article describes dental applications, metallurgical characterization, and physico-mechanical properties of Co-Cr alloys and also addresses their clinical and laboratory behavior in relation to those properties.

A comparison of marginal fit of glass infiltrated alumina copings fabricated using two different techniques and the effect of firing cycles over them

  • Bhowmik, Hirasankar;Parkhedkar, Rambhao
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.4
    • /
    • pp.196-203
    • /
    • 2011
  • PURPOSE. This study evaluated marginal fit of glass infiltrated alumina cores fabricated using two techniques and their marginal stability after firing cycles of veneering porcelain. MATERIALS AND METHODS. Fifteen standardized all-ceramic crowns were fabricated on a metal die using each technique: slip cast technique of VITA In-Ceram sprint Alumina (Group A as control) and plastic foil matrix technique of Turkom-Cera fused alumina core system (Group B). Copings were compared between groups and within groups at coping stage and after firing each layer of veneering porcelain. A device was used to standardize seating of copings on the metal die and positioning of the specimens under the microscope after each stage of fabrication. The specimens were not cemented and marginal gap was measured using an image analyzing software (Imagepro Express) on the photographs captured under an optical microscope. Two tailed unpaired 't test' was used to compare marginal gaps in two groups and one way ANOVA was used to analyze marginal distortion within each group at 95% confidence interval. RESULTS. The marginal gap was smaller at the coping stage in group B ($60+30{\mu}M$) than group A ($81+21{\mu}M$) with statistical significance. After firing of veneering porcelain the difference was insignificant. At the final stage, both groups exhibited lower mean marginal gaps than at the initial coping stage with the difference of $11.75{\mu}M$ for group A and $11.94{\mu}M$ for group B, but it was statistically insignificant due to high value of standard deviation. CONCLUSION. Within the limitations of this study, it was concluded that both techniques produced copings with comparable and acceptable marginal fit and marginal stability on firing veneering porcelain.