• Title/Summary/Keyword: poorly soluble

Search Result 119, Processing Time 0.037 seconds

Evaluation of a New Episomal Vector Based on the GAP Promoter for Structural Genomics in Pichia pastoris

  • Hong In-Pyo;Anderson Stephen;Choi Shin-Geon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1362-1368
    • /
    • 2006
  • A new constitutive episomal expression vector, pGAPZ-E, was constructed and used for initial screening of eukaryotic target gene expression in Pichia pastoris. Two reporter genes such as beta-galactosidase gene and GFPuv gene were overexpressed in P. pastoris. The expression level of the episomal pGAPZ-E strain was higher than that of the integrated form when the beta-galactosidase gene was used as the reporter gene in P. pastoris X33. The avoiding of both the integration procedure and an induction step simplified the overall screening process for eukaryotic target gene expression in P. pastoris. Nine human protein targets from the Core 50, family of Northeast Structural Genomics Consortium (http://www.nesg.org), which were intractable when expressed in E. coli, were subjected to rapid screening for soluble expression in P. pastoris. HR547, HR919, and HR1697 human proteins, which had previously been found to express poorly or to be insoluble in E. coli, expressed in soluble form in P. pastoris. Therefore, the new episomal GAP promoter vector provides a convenient and alternative system for high-throughput screening of eukaryotic protein expression in P. pastoris.

Preparing Method and Physico-chemical Characteristics of $Terfenadine-{\beta}-Cyclodextrin$ Inclusion Compound (테르페나딘-${\beta}$-시클로덱스트린 포접화합물의 제조방법 및 물리화학적 특성)

  • Choi, Han-Gon;Ryu, Jei-Man;Yoon, Sung-June
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.3
    • /
    • pp.219-223
    • /
    • 1997
  • Terfenadine, antihistaminic drug, is poorly soluble in water. The purpose of this study is to investigate the possibility of using $terfenadine-{\beta}-cyclodextrin$ inclusion compound, instead of terfenadine, as the active substance of solid dosage form by improving the solubility, dissolution and anti-histaminic activity of terfenadine. The solubility and binding characteristics of $terfenadine-{\beta}-cyclodextrin$ complex in pH $1.2{\sim}6.8$ were investigated. Furthermore, the preparing method of $terfenadine-{\beta}-\;cyclodextrin$ inclusion compound was setting up and its physico-chemical characteristics such as DSC curve, solubility, dissolution and anti-histaminic activity were investigated. In conclusion, the solubility of terfenadine was increasing ${\beta}-cyclodextrin$ and with the decreasing pH. $Terfenadine-{\beta}-cyclodextrin$ inclusion compound, whose yield is almost 100%, was prepared by neutralization method. This inclusion compound was 200-times as soluble as terfenadine in pH 1.2-6.8. In addition, it had the faster dissolution and anti-histaminic activity than terfenadine. Therefore, it is used to the active substance of solid dosage form such as tablet and capsule in stead of terfenadine.

  • PDF

Human Exposure and Health Effects of Inorganic and Elemental Mercury

  • Park, Jung-Duck;Zheng, Wei
    • Journal of Preventive Medicine and Public Health
    • /
    • v.45 no.6
    • /
    • pp.344-352
    • /
    • 2012
  • Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability of 7% to 15% after ingestion; they are also irritants and cause gastrointestinal symptoms. Upon entering the body, inorganic mercury compounds are accumulated mainly in the kidneys and produce kidney damage. In contrast, human exposure to elemental mercury is mainly by inhalation, followed by rapid absorption and distribution in all major organs. Elemental mercury from ingestion is poorly absorbed with a bioavailability of less than 0.01%. The primary target organs of elemental mercury are the brain and kidney. Elemental mercury is lipid soluble and can cross the blood-brain barrier, while inorganic mercury compounds are not lipid soluble, rendering them unable to cross the blood-brain barrier. Elemental mercury may also enter the brain from the nasal cavity through the olfactory pathway. The blood mercury is a useful biomarker after short-term and high-level exposure, whereas the urine mercury is the ideal biomarker for long-term exposure to both elemental and inorganic mercury, and also as a good indicator of body burden. This review discusses the common sources of mercury exposure, skin lightening products containing mercury and mercury release from dental amalgam filling, two issues that happen in daily life, bear significant public health importance, and yet undergo extensive debate on their safety.

Enhancement of Dissolution Properties of Poorly Soluble Drugs(IV) -Micronization of Furosemide by Recrystallization Method- (난용성 약물의 용출 증가(제4보) -재결정법에 의한 푸로세미드의 미세화-)

  • Koh, Ik-Bae;Shin, Sang-Chul;Oh, In-Joon
    • Journal of Pharmaceutical Investigation
    • /
    • v.18 no.2
    • /
    • pp.55-59
    • /
    • 1988
  • The size of furosemide was reduced by the recrystallization method in order to increase the dissolution rate of the drug. Surfactants or hydrophilic polymers were used to suppress the aggregation in the crystal formation-growth process of microparticles by dispersing action. Dissolution rate of microparticles increased remarkably due to the size reduction of microparticle. The particle size decreased with increasing the concentration of the drug and the dispersing agents, i.e., surfactants or hydrophilic polymers. No polymorphic transition occurred during the microcrystallization process, but the habit of crystal formation was altered in the case of anionic surfactant.

  • PDF

Purification and Characterization of Bacillus subtilis Protoporphyrinogen Oxidase and Pre-equilibrium Behavior During Oxidation of Protoporphyrinogen IX

  • Jeong, Eun-Ju;Han, Ok-Soo
    • BMB Reports
    • /
    • v.34 no.1
    • /
    • pp.39-42
    • /
    • 2001
  • Previous studies indicate that B. subtilis protoporphyrinogen oxidase is poorly inhibited by diphenyl ether herbicides. To better understand the basis of this insensitivity, the enzyme was overexpressed as a soluble protein in E. coli, purified and characterized. The mechanism of oxidation of B. subtilis protoporphyrinogen IX was studied and the enzyme kinetic parameters were determined for protoporpyrinogen IX; $K_m$, and $k_{cat}$ were $6.3\;{\mu}M$ and $0.028\;h-^1$, respectively. The enzyme required flavin adenine dinucleotide as a cofactor and its activity was enhanced by 1 mM n-octylglucopyranoside. The nonenzymatic oxidation rate was dependent on the concentration of protoporphyrinogen IX, suggesting that the reaction involves a pre-equilibrium step followed by a rate-limiting step.

  • PDF

A Novel Drug Delivery System Design for Meloxicam

  • Kim, Hyun-Jo;Lee, Il-Kyu
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.3
    • /
    • pp.151-155
    • /
    • 2005
  • A drug delivery system(DDS) for practically insoluble meloxicam was developed and evaluated by dissolution study. A novel DDS is two layered system, where the first layer is consisted of gas-forming agent for an immediate release and the second layer is composed of metolose SR(HPMC) for sustained release. This bilayered tablets were manufactured by using manual single punch machine. The results of dissolution study showed an initial burst release followed by sustained release for the experimental period time. From a pharmaceutical point of view, the designed DDS for meloxicam would be informative system in terms of poorly soluble analgesic medicines.

Pharmacokinetic and Pharmacodynamic Characteristics of Cyclosporin A in Rats and Rabbits

  • Lee, Yong-Bok
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.214-217
    • /
    • 2002
  • Cyclosporin A (CSA) is a poorly water-soluble cyclic peptide comprising 11 amino acids. It inhibits T-lymphocyte function that plays an important role in the induction of immune response. The potent immunosuppressive activity of CSA has been used for the prevention of rejection following transplantation of liver, kidney and bone marrow, etc. The use of CSA has been often limited by several disadvantages including low bioavailability, narrow therapeutic window, nephrotoxicity, hepatotoxicity and neurotoxicity. Moreover, CSA injection is limited to patients who are unable to take the oral preparations, because it has a risk of anaphylactic shock and nephrotoxicity due to Cremophor EL$\textregistered$, a solubilizing agent used in the commercial intravenous formulation. Owing to above mentioned disadvantages of commercial products, there is a great interest in the development of the alternative dosage forms. (omitted)

  • PDF

Inhibitory effect of chitosan oligosaccharides on the growth of tumor cells

  • Kim, Se-Kwon;Nam, Mi-Young;Nam, Kyung-Soo
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2000.05a
    • /
    • pp.416-417
    • /
    • 2000
  • Chitin, a poly $\beta$-(1longrightarrow14)-N-acetyl-D-glucosamine, is best known as a cell wall component of fungi and as a skeletal materials of invertebrates. Chitosan is derived from chitin by deacetylation in the presence of alkali. Chitosan has been developed as new physiological materials since it possesses antibacterial activity, hypocholesterolemic activity and antihypertensive action. However, the actions of chitosan in vivo still remain ambiguous as the physiological functional properties because most animal intestines, especially the human gastrointestinal tract, do not possess enzyme such as chitosanase which directly degrade the $\beta$-glucosidic linkage in chitosan, and consequently the unbroken polymers may be poorly absorbed into the human intestine. Therefore, recent studies as chitosan have attracted interest for chitosan oligosaccharides, because the oligosaccharides process not only water-soluble property but also versatile functional properties such as antitumor activity, immune-enhancing effects, enhancement of protective effects against infection with some pathogens in mice and antimicrobial activity (Kingsnorth et al., 1983, Mori et al., 1997). (omitted)

  • PDF

Preparation and Evaluation of Coated-Peonja Dry Elixir for Masking the Bitterness (쓴맛이 차폐된 편자 고형엘릭실제의 제조 및 평가)

  • Kim, Chong-Kook;Choi, Han-Gon
    • YAKHAK HOEJI
    • /
    • v.41 no.5
    • /
    • pp.602-606
    • /
    • 1997
  • Peonjahwan composed of crude herb, and materials and tissue of animals is a considerably bitter and poorly water-soluble oriental medicine for the treatment of hepatitis. Peonja dry elixir and Eudragit-coated peonja dry elixir were prepared using spray-dryer to mask the bitterness and enhance the release of ingredients from peonjahwan. The bitterness of peonja dry elixir and Eudragit-coated peonja dry elixir reduced to 1/2 and 1/4 of that from peonja powder, respectively. Furthermore, the release rate of bound bilirubin from dry elixir was significantly higher than that from peonja powder.

  • PDF