• Title/Summary/Keyword: pool boiling critical heat flux

Search Result 54, Processing Time 0.041 seconds

Critical heat flux (CHF) in pool boiling under static and rolling conditions

  • Tanjung, Elvira F.;Albdour, Samah A.;Jeong, Yeon Uk;Jo, Daeseong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.520-529
    • /
    • 2020
  • Experimental investigations were attempted to simultaneously observe the vapor behaviors and critical heat flux under static and rolling conditions. From visualization results, vapor initiated, grew, and detached individually in a vertical direction from the static heated surfaces (at 10, 20, and 30°). While under rolling motion, initiated vapor grew, and interacted with each other, resulting in forming a wider dry spot on the heated surface. Also, it was observed that the vapor drifted upward and stayed on the heated surface longer compared to under static condition. The faster the platform rolls, the longer the vapor stay on the heated surface, significantly decreasing the CHF. On the other hand, as the platform rolls slower (at high rolling period), CHF increases. CHF was decreased with increasing maximum rolling amplitude and inclination angle under both conditions (static and rolling). CHF under rolling conditions was noticed to be lower than under static condition except at maximum rolling amplitude of 10°. The bubble departure frequency at a maximum rolling amplitude of 10° was the highest among all of rolling amplitudes, thereby enhancing the CHF. These results indicate that rolling motion significantly affects vapor behaviors and CHF.

EFFECTS OF AL2O3 NANOPARTICLES DEPOSITION ON CRITICAL HEAT FLUX OF R-123 IN FLOW BOILING HEAT TRANSFER

  • SEO, SEOK BIN;BANG, IN CHEOL
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.398-406
    • /
    • 2015
  • In this study, R-123 flow boiling experiments were carried out to investigate the effects of nanoparticle deposition on heater surfaces on flow critical heat flux (CHF) and boiling heat transfer. It is known that CHF enhancement by nanoparticles results from porous structures that are very similar to layers of Chalk River unidentified deposit formed on nuclear fuel rod surfaces during the reactor operation period. Although previous studies have investigated the surface effects through surface modifications, most studies are limited to pool boiling conditions, and therefore, the effects of porous surfaces on flow boiling heat transfer are still unclear. In addition, there have been only few reports on suppression of wetting for decoupled approaches of reasoning. In this study, bare and $Al_2O_3$ nanoparticle-coated surfaces were prepared for the study experiments. The CHF of each surface was measured with different mass fluxes of $1,600kg/m^2s$, $1,800kg/m^2s$, $2,100kg/m^2s$, $2,400kg/m^2s$, and $2,600kg/m^2s$. The nanoparticle-coated tube showed CHF enhancement up to 17% at a mass flux of $2,400kg/m^2s$ compared with the bare tube. The factors for CHF enhancement are related to the enhanced rewetting process derived from capillary action through porous structures built-up by nanoparticles while suppressing relative wettability effects between two sample surfaces as a highly wettable R-123 refrigerant was used as a working fluid.

HIGH Ra NUMBER NATURAL CONVECTION IN A TRIANGULAR POOL WITH A HEAT GENERATION (열원이 있는 삼각형 풀의 높은 Ra수 자연대류)

  • Kim, Jong-Tae;Park, Rae-Joon;Kim, Hwan-Yeol;Hong, Seong-Wan;Song, Jin-Ho;Kim, Sang-Baik
    • Journal of computational fluids engineering
    • /
    • v.16 no.3
    • /
    • pp.66-74
    • /
    • 2011
  • A fluid in an enclosure can be heated by electric heating, chemical reaction, or fission heat. In order to remove the volumetric heat of the fluid, the walls surrounding the enclosure must be cooled. In this case, a natural convection occurs in the pool of the fluid, and it has a dominant role in heat transfer to the surrounding walls. It can augment the heat transfer rates tens to hundreds times larger than conductive heat transfer. The heat transfer by a natural convection in a regular shape such as a square cavity or semi-circular pool has been studied experimentally and numerically for many years. A pool of an inverted triangular shape with 10 degree inclined bottom walls has a good cooling performance because of enhanced boiling critical heat flux (CHF) compared to horizontal downward surface. The coolability of the pool is determined by comparing the thermal load from the pool and the maximum heat flux removable by cooling mechanism such as radiative or boiling heat transfer on the pool boundaries. In order to evaluate the pool coolability, it is important to correctly expect the thermal load by a natural convection heat transfer of the pool. In this study, turbulence models with modifications for buoyancy effect were validated for unsteady natural convections by volumetric heating. And natural convection in the triangular pool was evaluated by using the models.

NATURAL CONVECTION IN A TRIANGULAR POOL WITH VOLUMETRIC HEAT GENERATION (삼각형 형상의 풀 내에서 열원에 의한 자연대류 수치해석)

  • Kim, Jong-Tae;Park, Rae-Joon;Kim, Hwan-Yeol;Song, Jin-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.302-310
    • /
    • 2011
  • A fluid in an enclosure can be heated by electric heating, chemical reaction, or fission heat. In order to remove the volumetric heat of the fluid, the walls surrounding the enclosure must be cooled. In this case, a natural convection occurs in the pool of the fluid, and it has a dominant role in heat transfer to the surrounding walls. It can augment the heat transfer rates tens to hundreds times larger than conductive heat transfer. The heat transfer by a natural convection in a regular shape such as a square cavity or semi-circular pool has been studied experimentally and numerically for many years. A pool of an inverted triangular shape with 10 degree inclined bottom walls has a good cooling performance because of enhanced boiling critical heat flux (CHF) compared to horizontal downward surface. The coolability of the pool is determined by comparing the thermal load from the pool and the maximum heat flux removable by cooling mechanism such as radiative or boiling heat transfer on the pool boundaries. In order to evaluate the pool coolability, it is important to correctly expect the thermal load by a natural convection heat transfer of the pool. In this study, turbulence models with modifications for buoyancy effect were validated for unsteady natural convections by volumetric heating. And natural convection in the triangular pool was evaluated by using the models.

  • PDF

Pool boiling heat transfer of a copper microporous coating in borated water

  • Jun, Seongchul;Godinez, Juan C.;You, Seung M.;Kim, Hwan Yeol
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1939-1944
    • /
    • 2020
  • Pool boiling heat transfer of a copper microporous coating was experimentally studied in borated water with a concentration of boric acid from 0.0 to 5.0 vol percent (vol%) to determine the effect of boric acid on boiling heat transfer in water. A high-temperature, thermally conductive microporous coating (HTCMC) was created by sintering copper powder with an average particle size of 67 ㎛ onto a 1 cm × 1 cm plain copper surface with a coating thickness of ~300 ㎛ within a furnace in a vacuum environment. The tests showed that the nucleate boiling heat transfer coefficient (NBHT) of HTCMC became slightly less enhanced as the concentration of boric acid increased but the NBHT coefficient values were still significantly higher than those of the plain surface. The critical heat flux (CHF) values from 0 to 1.0 vol% were maintained at ~2,000 kW/㎡, and then, they gradually decreased down to ~1,700 kW/㎡ as the concentration increased further to 5.0 vol%. It is believed that the micro-scale pores of the HTCMC were partially blocked by the high boric acid concentration during the nucleate boiling such that the small bubbles were not effectively created using the HTCMC reentrant cavities as the boric acid concentration increased.

Pool Boiling Characteristics on the Microstructured surfaces with Both Rectangular Cavities and Channels (사각 공동 및 채널이 형성된 마이크로 구조 표면에서의 수조비등 특성연구)

  • Kim, Dong Eok;Park, Su Cheong;Yu, Dong In;Kim, Moo Hwan;Ahn, Ho Seon;Myung, Byung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.383-389
    • /
    • 2016
  • Based on a surface design with rectangular cavities and channels, we investigated the effects of gravity and capillary pressure on pool-boiling Critical Heat Flux (CHF). The microcavity structures could prevent liquid flow by the capillary pressure effect. In addition, the microchannel structures contributed to induce one-dimensional liquid flow on the boiling surface. The relationship between the CHF and capillary flow was clearly established. The driving potentials for the liquid supply into a boiling surface can be generated by the gravitational head and capillary pressure. Through an analysis of pool boiling and visualization data, we reveal that the liquid supplement to maintain the nucleate boiling condition on a boiling surface is closely related to the gravitational pressure head and capillary pressure effect.

Effect of surface condition on CHF in pool boiling systems: Research Issues (수조 비등에서 표면 특성이 CHF 에 미치는 영향에 대한 연구 동향 고찰)

  • Yeom, Su-Jin;An, Sang-Mo;Lee, Seung-S.;Lee, Sang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2578-2582
    • /
    • 2008
  • In predicting the critical heat flux (CHF) in pool boiling systems, the contact angle between the boiling surface and the liquid and the surface roughness are considered to be the important parameters. From the microscopic viewpoint, those are affected by the micro/nano structure of the surface. Several studies have been reported on the dependence of CHF on the surface microstructure such as height and width of the cavities and distances between them. In this paper, the effects of the boiling surface characteristics on CHF are reviewed and the future research issues are discussed for better prediction of CHF.

  • PDF

Boiling Heat Transfer Coefficients of Nanofluids Containing Carbon Nanotubes up to Critical Heat Fluxes (탄소나노튜브 적용 나노유체의 임계 열유속까지의 비등 열전달계수)

  • Park, Ki-Jung;Lee, Yo-Han;Jung, Dong-Soo;Shim, Sang-Eun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.7
    • /
    • pp.665-676
    • /
    • 2011
  • In this study, the nucleate pool boiling heat transfer coefficients (HTCs) and critical heat flux (CHF) for a smooth and square flat heater in a pool of pure water with and without carbon nanotubes (CNTs) dispersed at $60^{\circ}C$ were measured. Tested aqueous nanofluids were prepared using CNTs with volume concentrations of 0.0001%, 0.001%, and 0.01%. The CNTs were dispersed by chemically treating them with an acid in the absence of any polymers. The results showed that the pool boiling HTCs of the nanofluids are higher than those of pure water in the entire nucleate boiling regime. The acid-treated CNTs led to the deposition of a small amount of CNTs on the surface, and the CNTs themselves acted as heat-transfer-enhancing particles, owing to their very high thermal conductivity. There was a significant increase in the CHF- up to 150%-when compared to that of pure water containing CNTs with a volume concentration of 0.001%. This is attributed to the change in surface characteristics due to the deposition of a very thin layer of CNTs on the surface. This layer delays nucleate boiling and causes a reduction in the size of the large vapor canopy around the CHF. This results in a significant increase in the CHF.

Heat Transfer Characteristics of Spray Cooling Up to Critical Heat Flux on Thermoexcel-E Enhanced Surface (Thermoexcel-E 촉진 표면에서 임계 열유속까지의 분무 냉각 열전달 특성)

  • Lee, Yohan;Hong, Gwang-Wook;Lee, Jun-Soo;Jung, Dongsoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.9
    • /
    • pp.373-380
    • /
    • 2016
  • Spray cooling is a technology of increasing interest for electronic cooling and other high heat flux applications. In this study, heat transfer coefficients (HTCs) and critical heat fluxes (CHFs) are measured on a smooth square flat copper heater of $9.53{\times}9.53mm$ at $36^{\circ}C$ in a pool, a smooth flat surface and Thermoexcel-E surfaces are used to see the change in HTCs and CHFs according to the surface characteristics and FC-72 is used as the working fluid. FC-72 fluid has a significant influence on heat transfer characteristics of the spray over the cooling surface. HTCs are taken from $10kW/m^2$ to critical heat flux for all surfaces. Test results with Thermoexcel-E showed that CHFs of all enhanced surface is greatly improved. It can be said that surface form affects heat transfer coefficient and critical heat flux.