• Title/Summary/Keyword: polyvinylpyrrolidone(PVP)

Search Result 145, Processing Time 0.026 seconds

Effect of Various Supplements on Embryo Development and Quality of Bovine Embryos during In Vitro Maturation (한우 난포란의 체외성숙 시 여러 가지 첨가물이 배 발생과 품질에 미치는 영향)

  • Park Hum-Dae;Jang Mi-Jin;Park Yong-Soo
    • Reproductive and Developmental Biology
    • /
    • v.30 no.1
    • /
    • pp.21-26
    • /
    • 2006
  • This study was examined the effects of concentrations of polyvinylpyrrolidone(PVP) and supplementation of EGF, cysteine and PVP during in vitro maturation on the development of bovine embryos. In experiment 1, 0.1 to 3.0% PVP was supplemented to IVM medium before IVF. The development rates to the blastocyst stage was significantly higher in 0.5% PVP group than 3.0% PVP group (P<0.05). In experiment 2, EGF, rysteine and PVP were supplemented to IVM medium. The hight cleavage rate was obtained from cysteine group, but blastocyst formation rates did not differ among groups. The highest total cell number and inner cell mass (ICM) cell number were observed in cysteine group. In PVP group, ICM cell number was significantly low than those of cysteine and control groups (P<0.05). After embryo transfer, pregnancy rate was significantly low in PVP group compared to other groups (P<0.05). These results indicate that the supplementation of PVP in IVM medium support the embryo development, but has a deteriorate effect on the blastocyst quality.

POLYVINYLPYRROLIDONE METAL COMPLEXES. FORMATION STABILITY AND THEIR BIOLOGICAL ACTIVITY

  • Lee, V. A.;S. Sh. Rashidova
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.463-465
    • /
    • 1998
  • The peculiarities of the polyvinylpyrrolydone (PVP) interaction with transition metal ions of the first row in solution were studied. It was shown that PVP macromolecules due to their swelling conformation in organic solvents form the stable metal complexes. Metal ions were bond with oxygen and nitrogen atoms of PVP lactam rings. In water solution every metal ion interacts with one or two oxygen atoms out of 10-12 monomer units of the polymer. The additional contraction of PVP macromolecule coils in water have been found out by dissolving of the polymer metal complexes (PMC) synthesized in organic media. Toxicity, blood forming and immune stimulating activity and pharmaco-kinetic too of obtained polymers and their metal completes have been investigated. The factors and effects that responsible fur changing of PMC physical-chemical and biological properties have been estimated.

  • PDF

The xps study of the Cu-Zn nanofiber

  • Jeong, Eunkang;Kang, Yujin;Park, Juyun;Kang, Yong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.236.2-236.2
    • /
    • 2015
  • The copper-zinc(Cu-Zn) nanofiber was prepared by electrospinning method. The Cu/PVP (polyvinylpyrrolidone) and Zn/PVP precursor solutions were prepared by dissolution of copper sulfate and zinc acetate in methanol, respectively. The PVP was used to control the viscosity of the precursor solutions. The optimized ratio for the Cu/PVP and Zn/PVP nanofibers was determined separately. Then the suitable ratio of the precursor solutions was applied for fabrication of Cu/Zn/PVP nanofiber. For the electrospinning method, the precursor solutions were filled in a syringe. The distance between metallic needle on the syringe and collector was fixed at 16 cm and the voltage was applied on the tip was 13.0 kV. And the as-spun nanofiber was heated at 353K for removal of residual solvent. Then the heated nanofibers were calcined at 973K to decompose PVP. The obtained Cu, Zn, and Cu-Zn nanofibers were investigated with X-ray photoelectron spectroscopy (XPS) for the chemical properties, scanning electron microscopy (SEM) for the morphologies, and X-ray diffraction (XRD) to characterize the crystallinity and phase of nanofibers.

  • PDF

Transport of PVP-coated Silver Nanoparticles in Saturated Porous Media (포화된 다공성매체에서 PVP-코팅된 은나노입자의 이동성 연구)

  • Bae, Sujin;Jang, Min-Hee;Lee, Woo Chun;Park, Jae-Woo;Hwang, Yu Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.104-110
    • /
    • 2016
  • The transport of silver nanoparticles (AgNPs) was investigated through a column packed with sand. A series of column experiments were carried out to evaluate the effect of ionic strength (IS), pH, electrolyte type and clay mineral on mobility of polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs). The deposition of PVP-AgNPs was increased with increasing solution ionic strength and decreasing pH. Furthermore, the depositon of PVP-AgNPs was affected by the electrolyte type (NaCl vs. NaNO3) and was shown to be greater at NaNO3 solution. Also, the transport of PVP-AgNPs was greatly increased after the pre-deposition of clay particles on sand. Our results suggest that various environmental factors can influence the mobility of PVP-AgNPs in soil-groundwater systems and should be carefully considered in assessing their environmental risks.

Synthesis of Iron Nanopowder from FeCl3 Solution by Chemical Reduction Method for Recycling of Spent Neodymium Magnet (네오디뮴 폐자석 재활용을 위한 화학환원법을 이용한 철 나노 분말 제조)

  • Ha, Yonghwang;Gang, Ryun-Ji;Choi, Seung-Hoon;Yoon, Ho-Sung;Ahn, Jong-Gwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6187-6195
    • /
    • 2012
  • Recycling process of iron should be developed for efficient recovery of neodymium(Nd), rare metal, from acid-leaching solution of neodymium magnet. In this study, $FeCl_3$ solution as iron source was used for synthesis of iron nanoparticle with the condition of various factors, etc, reductant, surfactant. $Na_4O_7P_2$ and polyvinylpyrrolidone(PVP) as surfactants, $NaBH_4$ as reductant, and palladium chloride($PdCl_2$) as a nucleation seed were used. Iron powder was analyzed with instruments of XRD, SEM and PSA for measuring shape and size. Iron nanoparticles were made at the ratio of 1 : 5(Fe (III) : $NaBH_4$) after 30 min of reduction time. Size and shape of iron particles synthesized were round-form and 50 nm ~ 100 nm size. Zeta-potential of iron at the 100 mg/L of $Na_4O_7P_2$ was negative value, which is good for dispersion of metal particle. When $Na_4O_7P_2$(100 mg/L), PVP($FeCl_3$ : PVP = 1 : 4, w/w) and Pd($FeCl_3$ : $PdCl_2$ = 1 : 0.001, w/w) were used, iron nanoparticles which are round-shape, well-dispersed, near 100 nm-sized can be made.

Preparation of Porous Separators for Zn Air Batteries Through Phase Inversions of Polyethersulfone-PVP Solutions (Polyethersulfone-PVP 용액의 상전이를 통한 아연공기전지의 다공성 분리막 제조)

  • Cho, Yu Song;Koo, Ja-Kyung
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.10-19
    • /
    • 2014
  • Porous flat sheet membranes for separators in Zn air batteries were prepared with polyethersulfone (PES) solutions by immersion precipitation phase inversion method. PES/polyvinylpyrrolidone(PVP)/N-methylpyrrolidone(NMP) mixtures were used for casting solutions and water was used for coagulant. With the separators, Zn air batteries were fabricated. The separators were characterized by means of stress-strain test, impedance test and SEM. The Zn air batteries were tested by current interrupt method (CIM) and galvanostatic discharge method. The tensile strength increased with increasing PES content in the casting solution while the ionic conductivity decreased. On the other hand, the ionic conductivity increased while the tensile strength decreased with increasing PVP content. The effect of ionic conductivity trend of the separator in the Zn air battery was confirmed through current interrupt method and galvanostatic discharge method experiments. The battery with the separator from casting solution with higher PES content showed higher IR drop and lower discharge capacity. And the battery with the separator from casting solution with higher PVP content showed lower IR drop and higher discharge capacity.

Fabrication of Methanol Sensors Using Conductive Polypyrrole Nanofibers with a Core-Shell Structure (코아-셀 구조를 가지는 전도성 폴리피롤 나노섬유를 이용한 메탄올 센서 제작)

  • Jun, Tae-Sun;Lee, Sungho;Kim, Yong Shin
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.383-387
    • /
    • 2014
  • Electrically conductive polypyrrole-polyvinylpyrrolidone (PPy-PVP) nanofiber mats with a core-shell structure have been successfully fabricated by a two-step process: the formation of FeCl3-containing PVP nanofiber mat by electrospinning, and the vapor-phase polymerization (VPP) of pyrrole monomer on the mat in a sealed chamber at room temperature. Surface morphology and chemical composition of the PPy-PVP mat were characterized by SEM, EDX and FTIR analyses. The as-prepared nonwoven mat was composed of PPy-PVP nanofibers with an average diameter of 300 nm. The sheet conductivity of the nanofiber mat was measured to be approximately 0.01 S/cm by a four-point probe. We have also investigated gas-sensing properties of PPy-PVP nanofiber mat upon exposure to methanol vapor. The PPy-PVP nanofiber sensors were observed to have excellent methanol-sensing performance. The nanofiber-based core-shell nanostructure could give an opportunity to fabricate a highly sensitive and fast response sensor due to its high surfaceto-volume ratio.

Formulation and Skin Permeation Characteristics of Ketoprofen Patches (케토프로펜 패취제의 제제설계 및 피부 투과 특성)

  • 오흥설;이용석;김하영;이광표
    • YAKHAK HOEJI
    • /
    • v.45 no.5
    • /
    • pp.506-512
    • /
    • 2001
  • Ketoprofen (KP) was formulated as a transdermal patch using the percutaneous penetration enhancers sorbitan monmmleate(SMO), polyvinylpyrrolidone(PVP). The control patch without penetration enhancers showed a KP flux of 8.9$\pm$0.75$\mu\textrm{g}$/$\textrm{cm}^2$/h The flux was increased in proportion to the concentration of SMO added. Furthermore, lag times were decreased upon addition of SMO. Conversely; the skin flux of KP was decreased in proportion to the concentration of PVP added. Pharmacokinetic parameters including $C_{max}$, $T_{max}$, and AUC were increased when SMO was added. However, $C_{mas}$ significantly decreased by the addition of PVP. $T_{max}$ was not significantly different in 2%, 4%, and 8% PVP patches. Patches containing 4% PVP showed the highest AUC value (19.158$\mu\textrm{g}$.h/ml). We found that the effectiveness of the two percutaneous penetration enhancers for topical KP patches was similar, with the addition of appropriate amounts of HPC modifying both skin flux and lag time of KP in the patches. In conclusion, it is possible to manufacture KP patches exhibiting high AUC, high skin flux, and short lag time using percutaneous penetration enhancers of SMO and PVP.

  • PDF

Albumin-Crosslinked PVP Hydrogel as a Gastric Retention Platform (위내체류를 목적으로 한 알부민 가교 PVP 하이드로겔의 팽윤특성)

  • Shim, Chang-Koo;Yeo, So-Hyeon
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.3
    • /
    • pp.145-153
    • /
    • 1993
  • Retaining a drug in the stomach by some means is sometimes necessary to extend the G1 absorption time of the drug more than 6-8 hrs. Hydrogel has often been examined for its feasibility as a dosage form, so called platform, that could be retained in the stomach due to its excellent swelling properties in the gastric fluid. In this study, polyvinylpyrrolidone (PVP) hydrogel crosslinked by albumin or acrylated albumin was synthesized in a tablet form and evaluated for its possibility as the platform. The synthesis of the hydrogel was performed by $^{60}Co\;{\gamma}-ray$ irradiation of N-vinyl-2-pyrrolidone (monomer) in the presence of a crosslinking agent: aqueous solution of albumin or acrylated albumin. Synthetic conditions such as radiation dose, dose rate and concentration of crosslinking agent were varied in order to optimize the swelling and mechanical properties of the hydrogels. Degree of swelling of albumin-crosslinked PVP (Al-PVP) was highly dependent on radiation dose, dose rate and albumin concentration: it was decreased as they increased. On the other hand, that of acrylated albumin-crosslinked PVP (Acryl-PVP) was almost independent on them except dose rate: it was decreased as the radiation dose rate increased. The compressive strength of the two hydrogels was decreased as the dose rate increased. Digestion of both PVP in artificial gastric fluid containing pepsin was delayed by the ${\gamma}-ray$ irradiation. In conclusion, Al-PVP and Acry-PVP with diverse swelling and mechanical properties could be obtained by controlling synthetic conditions, mainly the irradiation dose rate.

  • PDF